ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordge1n0im Unicode version

Theorem ordge1n0im 6437
Description: An ordinal greater than or equal to 1 is nonzero. (Contributed by Jim Kingdon, 26-Jun-2019.)
Assertion
Ref Expression
ordge1n0im  |-  ( Ord 
A  ->  ( 1o  C_  A  ->  A  =/=  (/) ) )

Proof of Theorem ordge1n0im
StepHypRef Expression
1 ordgt0ge1 6436 . 2  |-  ( Ord 
A  ->  ( (/)  e.  A  <->  1o  C_  A ) )
2 ne0i 3430 . 2  |-  ( (/)  e.  A  ->  A  =/=  (/) )
31, 2syl6bir 164 1  |-  ( Ord 
A  ->  ( 1o  C_  A  ->  A  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148    =/= wne 2347    C_ wss 3130   (/)c0 3423   Ord word 4363   1oc1o 6410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-nul 4130
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-uni 3811  df-tr 4103  df-iord 4367  df-on 4369  df-suc 4372  df-1o 6417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator