ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordge1n0im GIF version

Theorem ordge1n0im 6415
Description: An ordinal greater than or equal to 1 is nonzero. (Contributed by Jim Kingdon, 26-Jun-2019.)
Assertion
Ref Expression
ordge1n0im (Ord 𝐴 → (1o𝐴𝐴 ≠ ∅))

Proof of Theorem ordge1n0im
StepHypRef Expression
1 ordgt0ge1 6414 . 2 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))
2 ne0i 3421 . 2 (∅ ∈ 𝐴𝐴 ≠ ∅)
31, 2syl6bir 163 1 (Ord 𝐴 → (1o𝐴𝐴 ≠ ∅))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  wne 2340  wss 3121  c0 3414  Ord word 4347  1oc1o 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-nul 4115
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356  df-1o 6395
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator