![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordge1n0im | GIF version |
Description: An ordinal greater than or equal to 1 is nonzero. (Contributed by Jim Kingdon, 26-Jun-2019.) |
Ref | Expression |
---|---|
ordge1n0im | ⊢ (Ord 𝐴 → (1o ⊆ 𝐴 → 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordgt0ge1 6490 | . 2 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) | |
2 | ne0i 3454 | . 2 ⊢ (∅ ∈ 𝐴 → 𝐴 ≠ ∅) | |
3 | 1, 2 | biimtrrdi 164 | 1 ⊢ (Ord 𝐴 → (1o ⊆ 𝐴 → 𝐴 ≠ ∅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ≠ wne 2364 ⊆ wss 3154 ∅c0 3447 Ord word 4394 1oc1o 6464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-nul 4156 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-uni 3837 df-tr 4129 df-iord 4398 df-on 4400 df-suc 4403 df-1o 6471 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |