ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordge1n0im GIF version

Theorem ordge1n0im 6503
Description: An ordinal greater than or equal to 1 is nonzero. (Contributed by Jim Kingdon, 26-Jun-2019.)
Assertion
Ref Expression
ordge1n0im (Ord 𝐴 → (1o𝐴𝐴 ≠ ∅))

Proof of Theorem ordge1n0im
StepHypRef Expression
1 ordgt0ge1 6502 . 2 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))
2 ne0i 3458 . 2 (∅ ∈ 𝐴𝐴 ≠ ∅)
31, 2biimtrrdi 164 1 (Ord 𝐴 → (1o𝐴𝐴 ≠ ∅))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wne 2367  wss 3157  c0 3451  Ord word 4398  1oc1o 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-nul 4160
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-uni 3841  df-tr 4133  df-iord 4402  df-on 4404  df-suc 4407  df-1o 6483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator