ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordge1n0im GIF version

Theorem ordge1n0im 6535
Description: An ordinal greater than or equal to 1 is nonzero. (Contributed by Jim Kingdon, 26-Jun-2019.)
Assertion
Ref Expression
ordge1n0im (Ord 𝐴 → (1o𝐴𝐴 ≠ ∅))

Proof of Theorem ordge1n0im
StepHypRef Expression
1 ordgt0ge1 6534 . 2 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))
2 ne0i 3471 . 2 (∅ ∈ 𝐴𝐴 ≠ ∅)
31, 2biimtrrdi 164 1 (Ord 𝐴 → (1o𝐴𝐴 ≠ ∅))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  wne 2377  wss 3170  c0 3464  Ord word 4417  1oc1o 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-nul 4178
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-uni 3857  df-tr 4151  df-iord 4421  df-on 4423  df-suc 4426  df-1o 6515
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator