ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordgt0ge1 Unicode version

Theorem ordgt0ge1 6523
Description: Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
ordgt0ge1  |-  ( Ord 
A  ->  ( (/)  e.  A  <->  1o  C_  A ) )

Proof of Theorem ordgt0ge1
StepHypRef Expression
1 0elon 4440 . . 3  |-  (/)  e.  On
2 ordelsuc 4554 . . 3  |-  ( (
(/)  e.  On  /\  Ord  A )  ->  ( (/)  e.  A  <->  suc  (/)  C_  A ) )
31, 2mpan 424 . 2  |-  ( Ord 
A  ->  ( (/)  e.  A  <->  suc  (/)  C_  A ) )
4 df-1o 6504 . . 3  |-  1o  =  suc  (/)
54sseq1i 3219 . 2  |-  ( 1o  C_  A  <->  suc  (/)  C_  A )
63, 5bitr4di 198 1  |-  ( Ord 
A  ->  ( (/)  e.  A  <->  1o  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2176    C_ wss 3166   (/)c0 3460   Ord word 4410   Oncon0 4411   suc csuc 4413   1oc1o 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-nul 4171
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-uni 3851  df-tr 4144  df-iord 4414  df-on 4416  df-suc 4419  df-1o 6504
This theorem is referenced by:  ordge1n0im  6524  archnqq  7532
  Copyright terms: Public domain W3C validator