ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  otelxp1 Unicode version

Theorem otelxp1 4635
Description: The first member of an ordered triple of classes in a cross product belongs to first cross product argument. (Contributed by NM, 28-May-2008.)
Assertion
Ref Expression
otelxp1  |-  ( <. <. A ,  B >. ,  C >.  e.  (
( R  X.  S
)  X.  T )  ->  A  e.  R
)

Proof of Theorem otelxp1
StepHypRef Expression
1 opelxp1 4633 . 2  |-  ( <. <. A ,  B >. ,  C >.  e.  (
( R  X.  S
)  X.  T )  ->  <. A ,  B >.  e.  ( R  X.  S ) )
2 opelxp1 4633 . 2  |-  ( <. A ,  B >.  e.  ( R  X.  S
)  ->  A  e.  R )
31, 2syl 14 1  |-  ( <. <. A ,  B >. ,  C >.  e.  (
( R  X.  S
)  X.  T )  ->  A  e.  R
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2135   <.cop 3574    X. cxp 4597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2724  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-opab 4039  df-xp 4605
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator