| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > otelxp1 | GIF version | ||
| Description: The first member of an ordered triple of classes in a cross product belongs to first cross product argument. (Contributed by NM, 28-May-2008.) |
| Ref | Expression |
|---|---|
| otelxp1 | ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝑅 × 𝑆) × 𝑇) → 𝐴 ∈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp1 4753 | . 2 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝑅 × 𝑆) × 𝑇) → 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) | |
| 2 | opelxp1 4753 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆) → 𝐴 ∈ 𝑅) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ ((𝑅 × 𝑆) × 𝑇) → 𝐴 ∈ 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 〈cop 3669 × cxp 4717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4146 df-xp 4725 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |