ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelxp2 Unicode version

Theorem opelxp2 4446
Description: The second member of an ordered pair of classes in a cross product belongs to second cross product argument. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opelxp2  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  ->  B  e.  D )

Proof of Theorem opelxp2
StepHypRef Expression
1 opelxp 4442 . 2  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  <->  ( A  e.  C  /\  B  e.  D ) )
21simprbi 269 1  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  ->  B  e.  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1436   <.cop 3434    X. cxp 4411
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2617  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-opab 3877  df-xp 4419
This theorem is referenced by:  dff4im  5410
  Copyright terms: Public domain W3C validator