ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelxp1 Unicode version

Theorem opelxp1 4698
Description: The first member of an ordered pair of classes in a cross product belongs to first cross product argument. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opelxp1  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  ->  A  e.  C )

Proof of Theorem opelxp1
StepHypRef Expression
1 opelxp 4694 . 2  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  <->  ( A  e.  C  /\  B  e.  D ) )
21simplbi 274 1  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  ->  A  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   <.cop 3626    X. cxp 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-opab 4096  df-xp 4670
This theorem is referenced by:  otelxp1  4700  dmxpss  5101  nfvres  5595  ressnop0  5746  swoord1  6630  swoord2  6631  txlm  14599
  Copyright terms: Public domain W3C validator