Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > po2nr | Unicode version |
Description: A partial order relation has no 2-cycle loops. (Contributed by NM, 27-Mar-1997.) |
Ref | Expression |
---|---|
po2nr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poirr 4292 | . . 3 | |
2 | 1 | adantrr 476 | . 2 |
3 | potr 4293 | . . . . . 6 | |
4 | 3 | 3exp2 1220 | . . . . 5 |
5 | 4 | com34 83 | . . . 4 |
6 | 5 | pm2.43d 50 | . . 3 |
7 | 6 | imp32 255 | . 2 |
8 | 2, 7 | mtod 658 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wcel 2141 class class class wbr 3989 wpo 4279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-po 4281 |
This theorem is referenced by: po3nr 4295 so2nr 4306 tridc 6877 |
Copyright terms: Public domain | W3C validator |