ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  po3nr GIF version

Theorem po3nr 4295
Description: A partial order relation has no 3-cycle loops. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
po3nr ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵))

Proof of Theorem po3nr
StepHypRef Expression
1 po2nr 4294 . . 3 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐷𝐷𝑅𝐵))
213adantr2 1152 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐷𝐷𝑅𝐵))
3 df-3an 975 . . 3 ((𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵) ↔ ((𝐵𝑅𝐶𝐶𝑅𝐷) ∧ 𝐷𝑅𝐵))
4 potr 4293 . . . 4 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))
54anim1d 334 . . 3 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (((𝐵𝑅𝐶𝐶𝑅𝐷) ∧ 𝐷𝑅𝐵) → (𝐵𝑅𝐷𝐷𝑅𝐵)))
63, 5syl5bi 151 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵) → (𝐵𝑅𝐷𝐷𝑅𝐵)))
72, 6mtod 658 1 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3a 973  wcel 2141   class class class wbr 3989   Po wpo 4279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-po 4281
This theorem is referenced by:  so3nr  4307
  Copyright terms: Public domain W3C validator