ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  po3nr GIF version

Theorem po3nr 4341
Description: A partial order relation has no 3-cycle loops. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
po3nr ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵))

Proof of Theorem po3nr
StepHypRef Expression
1 po2nr 4340 . . 3 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐷𝐷𝑅𝐵))
213adantr2 1159 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐷𝐷𝑅𝐵))
3 df-3an 982 . . 3 ((𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵) ↔ ((𝐵𝑅𝐶𝐶𝑅𝐷) ∧ 𝐷𝑅𝐵))
4 potr 4339 . . . 4 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))
54anim1d 336 . . 3 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (((𝐵𝑅𝐶𝐶𝑅𝐷) ∧ 𝐷𝑅𝐵) → (𝐵𝑅𝐷𝐷𝑅𝐵)))
63, 5biimtrid 152 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵) → (𝐵𝑅𝐷𝐷𝑅𝐵)))
72, 6mtod 664 1 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 980  wcel 2164   class class class wbr 4029   Po wpo 4325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-po 4327
This theorem is referenced by:  so3nr  4353
  Copyright terms: Public domain W3C validator