Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > po3nr | GIF version |
Description: A partial order relation has no 3-cycle loops. (Contributed by NM, 27-Mar-1997.) |
Ref | Expression |
---|---|
po3nr | ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷 ∧ 𝐷𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | po2nr 4287 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵𝑅𝐷 ∧ 𝐷𝑅𝐵)) | |
2 | 1 | 3adantr2 1147 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵𝑅𝐷 ∧ 𝐷𝑅𝐵)) |
3 | df-3an 970 | . . 3 ⊢ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷 ∧ 𝐷𝑅𝐵) ↔ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) ∧ 𝐷𝑅𝐵)) | |
4 | potr 4286 | . . . 4 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)) | |
5 | 4 | anim1d 334 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) ∧ 𝐷𝑅𝐵) → (𝐵𝑅𝐷 ∧ 𝐷𝑅𝐵))) |
6 | 3, 5 | syl5bi 151 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷 ∧ 𝐷𝑅𝐵) → (𝐵𝑅𝐷 ∧ 𝐷𝑅𝐵))) |
7 | 2, 6 | mtod 653 | 1 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷 ∧ 𝐷𝑅𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∧ w3a 968 ∈ wcel 2136 class class class wbr 3982 Po wpo 4272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-po 4274 |
This theorem is referenced by: so3nr 4300 |
Copyright terms: Public domain | W3C validator |