Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > potr | Unicode version |
Description: A partial order relation is a transitive relation. (Contributed by NM, 27-Mar-1997.) |
Ref | Expression |
---|---|
potr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pocl 4281 | . . 3 | |
2 | 1 | imp 123 | . 2 |
3 | 2 | simprd 113 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3a 968 wcel 2136 class class class wbr 3982 wpo 4272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-po 4274 |
This theorem is referenced by: po2nr 4287 po3nr 4288 pofun 4290 sotr 4296 issod 4297 poltletr 5004 poxp 6200 fimax2gtrilemstep 6866 |
Copyright terms: Public domain | W3C validator |