ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  potr Unicode version

Theorem potr 4237
Description: A partial order relation is a transitive relation. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
potr  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( B R C  /\  C R D )  ->  B R D ) )

Proof of Theorem potr
StepHypRef Expression
1 pocl 4232 . . 3  |-  ( R  Po  A  ->  (
( B  e.  A  /\  C  e.  A  /\  D  e.  A
)  ->  ( -.  B R B  /\  (
( B R C  /\  C R D )  ->  B R D ) ) ) )
21imp 123 . 2  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( -.  B R B  /\  ( ( B R C  /\  C R D )  ->  B R D ) ) )
32simprd 113 1  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( B R C  /\  C R D )  ->  B R D ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 963    e. wcel 1481   class class class wbr 3936    Po wpo 4223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-v 2691  df-un 3079  df-sn 3537  df-pr 3538  df-op 3540  df-br 3937  df-po 4225
This theorem is referenced by:  po2nr  4238  po3nr  4239  pofun  4241  sotr  4247  issod  4248  poltletr  4946  poxp  6136  fimax2gtrilemstep  6801
  Copyright terms: Public domain W3C validator