ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prssg GIF version

Theorem prssg 3579
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
prssg ((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶))

Proof of Theorem prssg
StepHypRef Expression
1 snssg 3558 . . 3 (𝐴𝑉 → (𝐴𝐶 ↔ {𝐴} ⊆ 𝐶))
2 snssg 3558 . . 3 (𝐵𝑊 → (𝐵𝐶 ↔ {𝐵} ⊆ 𝐶))
31, 2bi2anan9 571 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ ({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶)))
4 unss 3163 . . 3 (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶)
5 df-pr 3438 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
65sseq1i 3039 . . 3 ({𝐴, 𝐵} ⊆ 𝐶 ↔ ({𝐴} ∪ {𝐵}) ⊆ 𝐶)
74, 6bitr4i 185 . 2 (({𝐴} ⊆ 𝐶 ∧ {𝐵} ⊆ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)
83, 7syl6bb 194 1 ((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1436  cun 2986  wss 2988  {csn 3431  {cpr 3432
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-v 2617  df-un 2992  df-in 2994  df-ss 3001  df-sn 3437  df-pr 3438
This theorem is referenced by:  prssi  3580  prsspwg  3581
  Copyright terms: Public domain W3C validator