ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fientri3 Unicode version

Theorem fientri3 6985
Description: Trichotomy of dominance for finite sets. (Contributed by Jim Kingdon, 15-Sep-2021.)
Assertion
Ref Expression
fientri3  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  ~<_  B  \/  B  ~<_  A ) )

Proof of Theorem fientri3
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6829 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 120 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
32adantr 276 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  E. n  e.  om  A  ~~  n )
4 isfi 6829 . . . . 5  |-  ( B  e.  Fin  <->  E. m  e.  om  B  ~~  m
)
54biimpi 120 . . . 4  |-  ( B  e.  Fin  ->  E. m  e.  om  B  ~~  m
)
65ad2antlr 489 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  E. m  e.  om  B  ~~  m
)
7 simplrr 536 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  ->  A  ~~  n )
87adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  ->  A  ~~  n )
9 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  ->  n  C_  m )
10 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  ->  n  e.  om )
1110adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  ->  n  e.  om )
12 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  ->  m  e.  om )
13 nndomo 6934 . . . . . . . . 9  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( n  ~<_  m  <->  n  C_  m
) )
1411, 12, 13syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  -> 
( n  ~<_  m  <->  n  C_  m
) )
159, 14mpbird 167 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  ->  n  ~<_  m )
16 endomtr 6858 . . . . . . 7  |-  ( ( A  ~~  n  /\  n  ~<_  m )  ->  A  ~<_  m )
178, 15, 16syl2anc 411 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  ->  A  ~<_  m )
18 simplrr 536 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  ->  B  ~~  m )
1918ensymd 6851 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  ->  m  ~~  B )
20 domentr 6859 . . . . . 6  |-  ( ( A  ~<_  m  /\  m  ~~  B )  ->  A  ~<_  B )
2117, 19, 20syl2anc 411 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  ->  A  ~<_  B )
2221orcd 734 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  n  C_  m )  -> 
( A  ~<_  B  \/  B  ~<_  A ) )
23 simplrr 536 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  ->  B  ~~  m )
24 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  ->  m  C_  n )
25 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  ->  m  e.  om )
2610adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  ->  n  e.  om )
27 nndomo 6934 . . . . . . . . 9  |-  ( ( m  e.  om  /\  n  e.  om )  ->  ( m  ~<_  n  <->  m  C_  n
) )
2825, 26, 27syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  -> 
( m  ~<_  n  <->  m  C_  n
) )
2924, 28mpbird 167 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  ->  m  ~<_  n )
30 endomtr 6858 . . . . . . 7  |-  ( ( B  ~~  m  /\  m  ~<_  n )  ->  B  ~<_  n )
3123, 29, 30syl2anc 411 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  ->  B  ~<_  n )
327adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  ->  A  ~~  n )
3332ensymd 6851 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  ->  n  ~~  A )
34 domentr 6859 . . . . . 6  |-  ( ( B  ~<_  n  /\  n  ~~  A )  ->  B  ~<_  A )
3531, 33, 34syl2anc 411 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  ->  B  ~<_  A )
3635olcd 735 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  /\  m  C_  n )  -> 
( A  ~<_  B  \/  B  ~<_  A ) )
37 simprl 529 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  ->  m  e.  om )
38 nntri2or2 6565 . . . . 5  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( n  C_  m  \/  m  C_  n ) )
3910, 37, 38syl2anc 411 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  -> 
( n  C_  m  \/  m  C_  n ) )
4022, 36, 39mpjaodan 799 . . 3  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  B  ~~  m ) )  -> 
( A  ~<_  B  \/  B  ~<_  A ) )
416, 40rexlimddv 2619 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( A  ~<_  B  \/  B  ~<_  A ) )
423, 41rexlimddv 2619 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  ~<_  B  \/  B  ~<_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    e. wcel 2167   E.wrex 2476    C_ wss 3157   class class class wbr 4034   omcom 4627    ~~ cen 6806    ~<_ cdom 6807   Fincfn 6808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator