Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fientri3 | Unicode version |
Description: Trichotomy of dominance for finite sets. (Contributed by Jim Kingdon, 15-Sep-2021.) |
Ref | Expression |
---|---|
fientri3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 6739 | . . . 4 | |
2 | 1 | biimpi 119 | . . 3 |
3 | 2 | adantr 274 | . 2 |
4 | isfi 6739 | . . . . 5 | |
5 | 4 | biimpi 119 | . . . 4 |
6 | 5 | ad2antlr 486 | . . 3 |
7 | simplrr 531 | . . . . . . . 8 | |
8 | 7 | adantr 274 | . . . . . . 7 |
9 | simpr 109 | . . . . . . . 8 | |
10 | simplrl 530 | . . . . . . . . . 10 | |
11 | 10 | adantr 274 | . . . . . . . . 9 |
12 | simplrl 530 | . . . . . . . . 9 | |
13 | nndomo 6842 | . . . . . . . . 9 | |
14 | 11, 12, 13 | syl2anc 409 | . . . . . . . 8 |
15 | 9, 14 | mpbird 166 | . . . . . . 7 |
16 | endomtr 6768 | . . . . . . 7 | |
17 | 8, 15, 16 | syl2anc 409 | . . . . . 6 |
18 | simplrr 531 | . . . . . . 7 | |
19 | 18 | ensymd 6761 | . . . . . 6 |
20 | domentr 6769 | . . . . . 6 | |
21 | 17, 19, 20 | syl2anc 409 | . . . . 5 |
22 | 21 | orcd 728 | . . . 4 |
23 | simplrr 531 | . . . . . . 7 | |
24 | simpr 109 | . . . . . . . 8 | |
25 | simplrl 530 | . . . . . . . . 9 | |
26 | 10 | adantr 274 | . . . . . . . . 9 |
27 | nndomo 6842 | . . . . . . . . 9 | |
28 | 25, 26, 27 | syl2anc 409 | . . . . . . . 8 |
29 | 24, 28 | mpbird 166 | . . . . . . 7 |
30 | endomtr 6768 | . . . . . . 7 | |
31 | 23, 29, 30 | syl2anc 409 | . . . . . 6 |
32 | 7 | adantr 274 | . . . . . . 7 |
33 | 32 | ensymd 6761 | . . . . . 6 |
34 | domentr 6769 | . . . . . 6 | |
35 | 31, 33, 34 | syl2anc 409 | . . . . 5 |
36 | 35 | olcd 729 | . . . 4 |
37 | simprl 526 | . . . . 5 | |
38 | nntri2or2 6477 | . . . . 5 | |
39 | 10, 37, 38 | syl2anc 409 | . . . 4 |
40 | 22, 36, 39 | mpjaodan 793 | . . 3 |
41 | 6, 40 | rexlimddv 2592 | . 2 |
42 | 3, 41 | rexlimddv 2592 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 wcel 2141 wrex 2449 wss 3121 class class class wbr 3989 com 4574 cen 6716 cdom 6717 cfn 6718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |