![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pw1dc1 | GIF version |
Description: If, in the set of truth values (the powerset of 1o), equality to 1o is decidable, then excluded middle holds (and conversely). (Contributed by BJ and Jim Kingdon, 8-Aug-2024.) |
Ref | Expression |
---|---|
pw1dc1 | ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1dc0el 6967 | . 2 ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥) | |
2 | elpwi 3610 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 1o → 𝑥 ⊆ 1o) | |
3 | ss1o0el1o 6969 | . . . . 5 ⊢ (𝑥 ⊆ 1o → (∅ ∈ 𝑥 ↔ 𝑥 = 1o)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝑥 ∈ 𝒫 1o → (∅ ∈ 𝑥 ↔ 𝑥 = 1o)) |
5 | 4 | dcbid 839 | . . 3 ⊢ (𝑥 ∈ 𝒫 1o → (DECID ∅ ∈ 𝑥 ↔ DECID 𝑥 = 1o)) |
6 | 5 | ralbiia 2508 | . 2 ⊢ (∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥 ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o) |
7 | 1, 6 | bitri 184 | 1 ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3153 ∅c0 3446 𝒫 cpw 3601 EXMIDwem 4223 1oc1o 6462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-nul 4155 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-exmid 4224 df-suc 4402 df-1o 6469 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |