ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1dc1 GIF version

Theorem pw1dc1 6903
Description: If, in the set of truth values (the powerset of 1o), equality to 1o is decidable, then excluded middle holds (and conversely). (Contributed by BJ and Jim Kingdon, 8-Aug-2024.)
Assertion
Ref Expression
pw1dc1 (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o)

Proof of Theorem pw1dc1
StepHypRef Expression
1 pw1dc0el 6901 . 2 (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥)
2 elpwi 3581 . . . . 5 (𝑥 ∈ 𝒫 1o𝑥 ⊆ 1o)
3 ss1o0el1o 6902 . . . . 5 (𝑥 ⊆ 1o → (∅ ∈ 𝑥𝑥 = 1o))
42, 3syl 14 . . . 4 (𝑥 ∈ 𝒫 1o → (∅ ∈ 𝑥𝑥 = 1o))
54dcbid 838 . . 3 (𝑥 ∈ 𝒫 1o → (DECID ∅ ∈ 𝑥DECID 𝑥 = 1o))
65ralbiia 2489 . 2 (∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥 ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o)
71, 6bitri 184 1 (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o)
Colors of variables: wff set class
Syntax hints:  wb 105  DECID wdc 834   = wceq 1353  wcel 2146  wral 2453  wss 3127  c0 3420  𝒫 cpw 3572  EXMIDwem 4189  1oc1o 6400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-nul 4124
This theorem depends on definitions:  df-bi 117  df-dc 835  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-exmid 4190  df-suc 4365  df-1o 6407
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator