| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1dc1 | GIF version | ||
| Description: If, in the set of truth values (the powerset of 1o), equality to 1o is decidable, then excluded middle holds (and conversely). (Contributed by BJ and Jim Kingdon, 8-Aug-2024.) |
| Ref | Expression |
|---|---|
| pw1dc1 | ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1dc0el 7081 | . 2 ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥) | |
| 2 | elpwi 3658 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 1o → 𝑥 ⊆ 1o) | |
| 3 | ss1o0el1o 7083 | . . . . 5 ⊢ (𝑥 ⊆ 1o → (∅ ∈ 𝑥 ↔ 𝑥 = 1o)) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝑥 ∈ 𝒫 1o → (∅ ∈ 𝑥 ↔ 𝑥 = 1o)) |
| 5 | 4 | dcbid 843 | . . 3 ⊢ (𝑥 ∈ 𝒫 1o → (DECID ∅ ∈ 𝑥 ↔ DECID 𝑥 = 1o)) |
| 6 | 5 | ralbiia 2544 | . 2 ⊢ (∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥 ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o) |
| 7 | 1, 6 | bitri 184 | 1 ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 ∅c0 3491 𝒫 cpw 3649 EXMIDwem 4278 1oc1o 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4210 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-exmid 4279 df-suc 4462 df-1o 6568 |
| This theorem is referenced by: pw1dceq 16399 |
| Copyright terms: Public domain | W3C validator |