| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1dc1 | GIF version | ||
| Description: If, in the set of truth values (the powerset of 1o), equality to 1o is decidable, then excluded middle holds (and conversely). (Contributed by BJ and Jim Kingdon, 8-Aug-2024.) |
| Ref | Expression |
|---|---|
| pw1dc1 | ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1dc0el 7015 | . 2 ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥) | |
| 2 | elpwi 3626 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 1o → 𝑥 ⊆ 1o) | |
| 3 | ss1o0el1o 7017 | . . . . 5 ⊢ (𝑥 ⊆ 1o → (∅ ∈ 𝑥 ↔ 𝑥 = 1o)) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝑥 ∈ 𝒫 1o → (∅ ∈ 𝑥 ↔ 𝑥 = 1o)) |
| 5 | 4 | dcbid 840 | . . 3 ⊢ (𝑥 ∈ 𝒫 1o → (DECID ∅ ∈ 𝑥 ↔ DECID 𝑥 = 1o)) |
| 6 | 5 | ralbiia 2521 | . 2 ⊢ (∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥 ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o) |
| 7 | 1, 6 | bitri 184 | 1 ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3167 ∅c0 3461 𝒫 cpw 3617 EXMIDwem 4242 1oc1o 6502 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-nul 4174 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-exmid 4243 df-suc 4422 df-1o 6509 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |