Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pw1dc1 | GIF version |
Description: If, in the set of truth values (the powerset of 1o), equality to 1o is decidable, then excluded middle holds (and conversely). (Contributed by BJ and Jim Kingdon, 8-Aug-2024.) |
Ref | Expression |
---|---|
pw1dc1 | ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1dc0el 6901 | . 2 ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥) | |
2 | elpwi 3581 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 1o → 𝑥 ⊆ 1o) | |
3 | ss1o0el1o 6902 | . . . . 5 ⊢ (𝑥 ⊆ 1o → (∅ ∈ 𝑥 ↔ 𝑥 = 1o)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝑥 ∈ 𝒫 1o → (∅ ∈ 𝑥 ↔ 𝑥 = 1o)) |
5 | 4 | dcbid 838 | . . 3 ⊢ (𝑥 ∈ 𝒫 1o → (DECID ∅ ∈ 𝑥 ↔ DECID 𝑥 = 1o)) |
6 | 5 | ralbiia 2489 | . 2 ⊢ (∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥 ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o) |
7 | 1, 6 | bitri 184 | 1 ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 DECID wdc 834 = wceq 1353 ∈ wcel 2146 ∀wral 2453 ⊆ wss 3127 ∅c0 3420 𝒫 cpw 3572 EXMIDwem 4189 1oc1o 6400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-nul 4124 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-exmid 4190 df-suc 4365 df-1o 6407 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |