Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pw1dc1 | GIF version |
Description: If, in the set of truth values (the powerset of 1o), equality to 1o is decidable, then excluded middle holds (and conversely). (Contributed by BJ and Jim Kingdon, 8-Aug-2024.) |
Ref | Expression |
---|---|
pw1dc1 | ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1dc0el 6877 | . 2 ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥) | |
2 | elpwi 3568 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 1o → 𝑥 ⊆ 1o) | |
3 | ss1o0el1o 6878 | . . . . 5 ⊢ (𝑥 ⊆ 1o → (∅ ∈ 𝑥 ↔ 𝑥 = 1o)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝑥 ∈ 𝒫 1o → (∅ ∈ 𝑥 ↔ 𝑥 = 1o)) |
5 | 4 | dcbid 828 | . . 3 ⊢ (𝑥 ∈ 𝒫 1o → (DECID ∅ ∈ 𝑥 ↔ DECID 𝑥 = 1o)) |
6 | 5 | ralbiia 2480 | . 2 ⊢ (∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥 ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o) |
7 | 1, 6 | bitri 183 | 1 ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ⊆ wss 3116 ∅c0 3409 𝒫 cpw 3559 EXMIDwem 4173 1oc1o 6377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-nul 4108 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-exmid 4174 df-suc 4349 df-1o 6384 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |