ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1dc1 GIF version

Theorem pw1dc1 7044
Description: If, in the set of truth values (the powerset of 1o), equality to 1o is decidable, then excluded middle holds (and conversely). (Contributed by BJ and Jim Kingdon, 8-Aug-2024.)
Assertion
Ref Expression
pw1dc1 (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o)

Proof of Theorem pw1dc1
StepHypRef Expression
1 pw1dc0el 7041 . 2 (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥)
2 elpwi 3638 . . . . 5 (𝑥 ∈ 𝒫 1o𝑥 ⊆ 1o)
3 ss1o0el1o 7043 . . . . 5 (𝑥 ⊆ 1o → (∅ ∈ 𝑥𝑥 = 1o))
42, 3syl 14 . . . 4 (𝑥 ∈ 𝒫 1o → (∅ ∈ 𝑥𝑥 = 1o))
54dcbid 842 . . 3 (𝑥 ∈ 𝒫 1o → (DECID ∅ ∈ 𝑥DECID 𝑥 = 1o))
65ralbiia 2524 . 2 (∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥 ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o)
71, 6bitri 184 1 (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o)
Colors of variables: wff set class
Syntax hints:  wb 105  DECID wdc 838   = wceq 1375  wcel 2180  wral 2488  wss 3177  c0 3471  𝒫 cpw 3629  EXMIDwem 4257  1oc1o 6525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191  ax-nul 4189
This theorem depends on definitions:  df-bi 117  df-dc 839  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-v 2781  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-exmid 4258  df-suc 4439  df-1o 6532
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator