ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1dc1 GIF version

Theorem pw1dc1 6915
Description: If, in the set of truth values (the powerset of 1o), equality to 1o is decidable, then excluded middle holds (and conversely). (Contributed by BJ and Jim Kingdon, 8-Aug-2024.)
Assertion
Ref Expression
pw1dc1 (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o)

Proof of Theorem pw1dc1
StepHypRef Expression
1 pw1dc0el 6913 . 2 (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥)
2 elpwi 3586 . . . . 5 (𝑥 ∈ 𝒫 1o𝑥 ⊆ 1o)
3 ss1o0el1o 6914 . . . . 5 (𝑥 ⊆ 1o → (∅ ∈ 𝑥𝑥 = 1o))
42, 3syl 14 . . . 4 (𝑥 ∈ 𝒫 1o → (∅ ∈ 𝑥𝑥 = 1o))
54dcbid 838 . . 3 (𝑥 ∈ 𝒫 1o → (DECID ∅ ∈ 𝑥DECID 𝑥 = 1o))
65ralbiia 2491 . 2 (∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥 ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o)
71, 6bitri 184 1 (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o)
Colors of variables: wff set class
Syntax hints:  wb 105  DECID wdc 834   = wceq 1353  wcel 2148  wral 2455  wss 3131  c0 3424  𝒫 cpw 3577  EXMIDwem 4196  1oc1o 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-nul 4131
This theorem depends on definitions:  df-bi 117  df-dc 835  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-exmid 4197  df-suc 4373  df-1o 6419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator