ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pp0ex Unicode version

Theorem pp0ex 4113
Description:  { (/)
,  { (/) } } (the ordinal 2) is a set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pp0ex  |-  { (/) ,  { (/) } }  e.  _V

Proof of Theorem pp0ex
StepHypRef Expression
1 p0ex 4112 . . 3  |-  { (/) }  e.  _V
21pwex 4107 . 2  |-  ~P { (/)
}  e.  _V
3 pwpw0ss 3731 . 2  |-  { (/) ,  { (/) } }  C_  ~P { (/) }
42, 3ssexi 4066 1  |-  { (/) ,  { (/) } }  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 1480   _Vcvv 2686   (/)c0 3363   ~Pcpw 3510   {csn 3527   {cpr 3528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534
This theorem is referenced by:  ord3ex  4114  ontr2exmid  4440  ordtri2or2exmidlem  4441  onsucelsucexmidlem  4444  regexmid  4450  reg2exmid  4451  reg3exmid  4494  nnregexmid  4534  acexmidlemcase  5769  acexmidlemv  5772  exmidaclem  7064
  Copyright terms: Public domain W3C validator