ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pp0ex Unicode version

Theorem pp0ex 4168
Description:  { (/)
,  { (/) } } (the ordinal 2) is a set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pp0ex  |-  { (/) ,  { (/) } }  e.  _V

Proof of Theorem pp0ex
StepHypRef Expression
1 p0ex 4167 . . 3  |-  { (/) }  e.  _V
21pwex 4162 . 2  |-  ~P { (/)
}  e.  _V
3 pwpw0ss 3784 . 2  |-  { (/) ,  { (/) } }  C_  ~P { (/) }
42, 3ssexi 4120 1  |-  { (/) ,  { (/) } }  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   _Vcvv 2726   (/)c0 3409   ~Pcpw 3559   {csn 3576   {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583
This theorem is referenced by:  ord3ex  4169  ontr2exmid  4502  ordtri2or2exmidlem  4503  onsucelsucexmidlem  4506  regexmid  4512  reg2exmid  4513  reg3exmid  4557  nnregexmid  4598  acexmidlemcase  5837  acexmidlemv  5840  exmidaclem  7164
  Copyright terms: Public domain W3C validator