ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pp0ex Unicode version

Theorem pp0ex 4273
Description:  { (/)
,  { (/) } } (the ordinal 2) is a set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pp0ex  |-  { (/) ,  { (/) } }  e.  _V

Proof of Theorem pp0ex
StepHypRef Expression
1 p0ex 4272 . . 3  |-  { (/) }  e.  _V
21pwex 4267 . 2  |-  ~P { (/)
}  e.  _V
3 pwpw0ss 3883 . 2  |-  { (/) ,  { (/) } }  C_  ~P { (/) }
42, 3ssexi 4222 1  |-  { (/) ,  { (/) } }  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   _Vcvv 2799   (/)c0 3491   ~Pcpw 3649   {csn 3666   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673
This theorem is referenced by:  ord3ex  4274  ontr2exmid  4617  ordtri2or2exmidlem  4618  onsucelsucexmidlem  4621  regexmid  4627  reg2exmid  4628  reg3exmid  4672  nnregexmid  4713  acexmidlemcase  5996  acexmidlemv  5999  exmidpw2en  7074  exmidaclem  7390
  Copyright terms: Public domain W3C validator