ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pp0ex Unicode version

Theorem pp0ex 4175
Description:  { (/)
,  { (/) } } (the ordinal 2) is a set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pp0ex  |-  { (/) ,  { (/) } }  e.  _V

Proof of Theorem pp0ex
StepHypRef Expression
1 p0ex 4174 . . 3  |-  { (/) }  e.  _V
21pwex 4169 . 2  |-  ~P { (/)
}  e.  _V
3 pwpw0ss 3791 . 2  |-  { (/) ,  { (/) } }  C_  ~P { (/) }
42, 3ssexi 4127 1  |-  { (/) ,  { (/) } }  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   _Vcvv 2730   (/)c0 3414   ~Pcpw 3566   {csn 3583   {cpr 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590
This theorem is referenced by:  ord3ex  4176  ontr2exmid  4509  ordtri2or2exmidlem  4510  onsucelsucexmidlem  4513  regexmid  4519  reg2exmid  4520  reg3exmid  4564  nnregexmid  4605  acexmidlemcase  5848  acexmidlemv  5851  exmidaclem  7185
  Copyright terms: Public domain W3C validator