| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwpw0ss | GIF version | ||
| Description: Compute the power set of the power set of the empty set. (See pw0 3814 for the power set of the empty set.) Theorem 90 of [Suppes] p. 48 (but with subset in place of equality). (Contributed by Jim Kingdon, 12-Aug-2018.) |
| Ref | Expression |
|---|---|
| pwpw0ss | ⊢ {∅, {∅}} ⊆ 𝒫 {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsnss 3881 | 1 ⊢ {∅, {∅}} ⊆ 𝒫 {∅} |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3197 ∅c0 3491 𝒫 cpw 3649 {csn 3666 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: pp0ex 4272 exmidpw 7058 exmidpweq 7059 pw1dom2 7400 pw1ne1 7402 |
| Copyright terms: Public domain | W3C validator |