| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwpwssunieq | GIF version | ||
| Description: The class of sets whose union is equal to a given class is included in the double power class of that class. (Contributed by BJ, 29-Apr-2021.) |
| Ref | Expression |
|---|---|
| pwpwssunieq | ⊢ {𝑥 ∣ ∪ 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3247 | . . 3 ⊢ (∪ 𝑥 = 𝐴 → ∪ 𝑥 ⊆ 𝐴) | |
| 2 | 1 | ss2abi 3265 | . 2 ⊢ {𝑥 ∣ ∪ 𝑥 = 𝐴} ⊆ {𝑥 ∣ ∪ 𝑥 ⊆ 𝐴} |
| 3 | pwpwab 4015 | . 2 ⊢ 𝒫 𝒫 𝐴 = {𝑥 ∣ ∪ 𝑥 ⊆ 𝐴} | |
| 4 | 2, 3 | sseqtrri 3228 | 1 ⊢ {𝑥 ∣ ∪ 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 {cab 2191 ⊆ wss 3166 𝒫 cpw 3616 ∪ cuni 3850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 df-uni 3851 |
| This theorem is referenced by: toponsspwpwg 14494 dmtopon 14495 |
| Copyright terms: Public domain | W3C validator |