Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwpwssunieq | GIF version |
Description: The class of sets whose union is equal to a given class is included in the double power class of that class. (Contributed by BJ, 29-Apr-2021.) |
Ref | Expression |
---|---|
pwpwssunieq | ⊢ {𝑥 ∣ ∪ 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3182 | . . 3 ⊢ (∪ 𝑥 = 𝐴 → ∪ 𝑥 ⊆ 𝐴) | |
2 | 1 | ss2abi 3200 | . 2 ⊢ {𝑥 ∣ ∪ 𝑥 = 𝐴} ⊆ {𝑥 ∣ ∪ 𝑥 ⊆ 𝐴} |
3 | pwpwab 3936 | . 2 ⊢ 𝒫 𝒫 𝐴 = {𝑥 ∣ ∪ 𝑥 ⊆ 𝐴} | |
4 | 2, 3 | sseqtrri 3163 | 1 ⊢ {𝑥 ∣ ∪ 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 {cab 2143 ⊆ wss 3102 𝒫 cpw 3543 ∪ cuni 3772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-in 3108 df-ss 3115 df-pw 3545 df-uni 3773 |
This theorem is referenced by: toponsspwpwg 12380 dmtopon 12381 |
Copyright terms: Public domain | W3C validator |