Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwpwssunieq | GIF version |
Description: The class of sets whose union is equal to a given class is included in the double power class of that class. (Contributed by BJ, 29-Apr-2021.) |
Ref | Expression |
---|---|
pwpwssunieq | ⊢ {𝑥 ∣ ∪ 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3201 | . . 3 ⊢ (∪ 𝑥 = 𝐴 → ∪ 𝑥 ⊆ 𝐴) | |
2 | 1 | ss2abi 3219 | . 2 ⊢ {𝑥 ∣ ∪ 𝑥 = 𝐴} ⊆ {𝑥 ∣ ∪ 𝑥 ⊆ 𝐴} |
3 | pwpwab 3960 | . 2 ⊢ 𝒫 𝒫 𝐴 = {𝑥 ∣ ∪ 𝑥 ⊆ 𝐴} | |
4 | 2, 3 | sseqtrri 3182 | 1 ⊢ {𝑥 ∣ ∪ 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 {cab 2156 ⊆ wss 3121 𝒫 cpw 3566 ∪ cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-uni 3797 |
This theorem is referenced by: toponsspwpwg 12814 dmtopon 12815 |
Copyright terms: Public domain | W3C validator |