ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwpwssunieq GIF version

Theorem pwpwssunieq 3954
Description: The class of sets whose union is equal to a given class is included in the double power class of that class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
pwpwssunieq {𝑥 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem pwpwssunieq
StepHypRef Expression
1 eqimss 3196 . . 3 ( 𝑥 = 𝐴 𝑥𝐴)
21ss2abi 3214 . 2 {𝑥 𝑥 = 𝐴} ⊆ {𝑥 𝑥𝐴}
3 pwpwab 3953 . 2 𝒫 𝒫 𝐴 = {𝑥 𝑥𝐴}
42, 3sseqtrri 3177 1 {𝑥 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1343  {cab 2151  wss 3116  𝒫 cpw 3559   cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-uni 3790
This theorem is referenced by:  toponsspwpwg  12660  dmtopon  12661
  Copyright terms: Public domain W3C validator