ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r2al Unicode version

Theorem r2al 2549
Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.)
Assertion
Ref Expression
r2al  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )
)
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)    B( x, y)

Proof of Theorem r2al
StepHypRef Expression
1 nfcv 2372 . 2  |-  F/_ y A
21r2alf 2547 1  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393    e. wcel 2200   A.wral 2508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513
This theorem is referenced by:  r3al  2574  raliunxp  4863  codir  5117  qfto  5118  fununi  5389  dff13  5892  mpo2eqb  6114  qliftfun  6764  cnmpt12  14961  cnmpt22  14968
  Copyright terms: Public domain W3C validator