ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r2al Unicode version

Theorem r2al 2454
Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.)
Assertion
Ref Expression
r2al  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )
)
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)    B( x, y)

Proof of Theorem r2al
StepHypRef Expression
1 nfcv 2281 . 2  |-  F/_ y A
21r2alf 2452 1  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1329    e. wcel 1480   A.wral 2416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421
This theorem is referenced by:  r3al  2477  raliunxp  4683  codir  4930  qfto  4931  fununi  5194  dff13  5672  mpo2eqb  5883  qliftfun  6514  cnmpt12  12482  cnmpt22  12489
  Copyright terms: Public domain W3C validator