Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r2al | Unicode version |
Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) |
Ref | Expression |
---|---|
r2al |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . 2 | |
2 | 1 | r2alf 2483 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wcel 2136 wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 |
This theorem is referenced by: r3al 2510 raliunxp 4745 codir 4992 qfto 4993 fununi 5256 dff13 5736 mpo2eqb 5951 qliftfun 6583 cnmpt12 12927 cnmpt22 12934 |
Copyright terms: Public domain | W3C validator |