ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqdv Unicode version

Theorem rabeqdv 2627
Description: Equality of restricted class abstractions. Deduction form of rabeq 2625. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypothesis
Ref Expression
rabeqdv.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
rabeqdv  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ps } )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem rabeqdv
StepHypRef Expression
1 rabeqdv.1 . 2  |-  ( ph  ->  A  =  B )
2 rabeq 2625 . 2  |-  ( A  =  B  ->  { x  e.  A  |  ps }  =  { x  e.  B  |  ps } )
31, 2syl 14 1  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ps } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1296   {crab 2374
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-rab 2379
This theorem is referenced by:  dfphi2  11638  cncfval  12340
  Copyright terms: Public domain W3C validator