ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqdv Unicode version

Theorem rabeqdv 2720
Description: Equality of restricted class abstractions. Deduction form of rabeq 2718. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypothesis
Ref Expression
rabeqdv.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
rabeqdv  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ps } )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem rabeqdv
StepHypRef Expression
1 rabeqdv.1 . 2  |-  ( ph  ->  A  =  B )
2 rabeq 2718 . 2  |-  ( A  =  B  ->  { x  e.  A  |  ps }  =  { x  e.  B  |  ps } )
31, 2syl 14 1  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ps } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   {crab 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453
This theorem is referenced by:  dfphi2  12152  cncfval  13199  reldvg  13288  dvfvalap  13290
  Copyright terms: Public domain W3C validator