ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqdv Unicode version

Theorem rabeqdv 2724
Description: Equality of restricted class abstractions. Deduction form of rabeq 2722. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypothesis
Ref Expression
rabeqdv.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
rabeqdv  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ps } )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem rabeqdv
StepHypRef Expression
1 rabeqdv.1 . 2  |-  ( ph  ->  A  =  B )
2 rabeq 2722 . 2  |-  ( A  =  B  ->  { x  e.  A  |  ps }  =  { x  e.  B  |  ps } )
31, 2syl 14 1  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ps } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   {crab 2452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457
This theorem is referenced by:  dfphi2  12174  cncfval  13353  reldvg  13442  dvfvalap  13444
  Copyright terms: Public domain W3C validator