ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsppropd Unicode version

Theorem lsppropd 13928
Description: If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.)
Hypotheses
Ref Expression
lsspropd.b1  |-  ( ph  ->  B  =  ( Base `  K ) )
lsspropd.b2  |-  ( ph  ->  B  =  ( Base `  L ) )
lsspropd.w  |-  ( ph  ->  B  C_  W )
lsspropd.p  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
lsspropd.s1  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  e.  W )
lsspropd.s2  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
lsspropd.p1  |-  ( ph  ->  P  =  ( Base `  (Scalar `  K )
) )
lsspropd.p2  |-  ( ph  ->  P  =  ( Base `  (Scalar `  L )
) )
lsppropd.v1  |-  ( ph  ->  K  e.  X )
lsppropd.v2  |-  ( ph  ->  L  e.  Y )
Assertion
Ref Expression
lsppropd  |-  ( ph  ->  ( LSpan `  K )  =  ( LSpan `  L
) )
Distinct variable groups:    x, y, B   
x, K, y    ph, x, y    x, W, y    x, L, y    x, P, y
Allowed substitution hints:    X( x, y)    Y( x, y)

Proof of Theorem lsppropd
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsspropd.b1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
2 lsspropd.b2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
31, 2eqtr3d 2228 . . . 4  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
43pweqd 3606 . . 3  |-  ( ph  ->  ~P ( Base `  K
)  =  ~P ( Base `  L ) )
5 lsspropd.w . . . . . 6  |-  ( ph  ->  B  C_  W )
6 lsspropd.p . . . . . 6  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
7 lsspropd.s1 . . . . . 6  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  e.  W )
8 lsspropd.s2 . . . . . 6  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
9 lsspropd.p1 . . . . . 6  |-  ( ph  ->  P  =  ( Base `  (Scalar `  K )
) )
10 lsspropd.p2 . . . . . 6  |-  ( ph  ->  P  =  ( Base `  (Scalar `  L )
) )
11 lsppropd.v1 . . . . . 6  |-  ( ph  ->  K  e.  X )
12 lsppropd.v2 . . . . . 6  |-  ( ph  ->  L  e.  Y )
131, 2, 5, 6, 7, 8, 9, 10, 11, 12lsspropdg 13927 . . . . 5  |-  ( ph  ->  ( LSubSp `  K )  =  ( LSubSp `  L
) )
1413rabeqdv 2754 . . . 4  |-  ( ph  ->  { t  e.  (
LSubSp `  K )  |  s  C_  t }  =  { t  e.  (
LSubSp `  L )  |  s  C_  t }
)
1514inteqd 3875 . . 3  |-  ( ph  ->  |^| { t  e.  ( LSubSp `  K )  |  s  C_  t }  =  |^| { t  e.  ( LSubSp `  L
)  |  s  C_  t } )
164, 15mpteq12dv 4111 . 2  |-  ( ph  ->  ( s  e.  ~P ( Base `  K )  |-> 
|^| { t  e.  (
LSubSp `  K )  |  s  C_  t }
)  =  ( s  e.  ~P ( Base `  L )  |->  |^| { t  e.  ( LSubSp `  L
)  |  s  C_  t } ) )
17 eqid 2193 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
18 eqid 2193 . . . 4  |-  ( LSubSp `  K )  =  (
LSubSp `  K )
19 eqid 2193 . . . 4  |-  ( LSpan `  K )  =  (
LSpan `  K )
2017, 18, 19lspfval 13884 . . 3  |-  ( K  e.  X  ->  ( LSpan `  K )  =  ( s  e.  ~P ( Base `  K )  |-> 
|^| { t  e.  (
LSubSp `  K )  |  s  C_  t }
) )
2111, 20syl 14 . 2  |-  ( ph  ->  ( LSpan `  K )  =  ( s  e. 
~P ( Base `  K
)  |->  |^| { t  e.  ( LSubSp `  K )  |  s  C_  t } ) )
22 eqid 2193 . . . 4  |-  ( Base `  L )  =  (
Base `  L )
23 eqid 2193 . . . 4  |-  ( LSubSp `  L )  =  (
LSubSp `  L )
24 eqid 2193 . . . 4  |-  ( LSpan `  L )  =  (
LSpan `  L )
2522, 23, 24lspfval 13884 . . 3  |-  ( L  e.  Y  ->  ( LSpan `  L )  =  ( s  e.  ~P ( Base `  L )  |-> 
|^| { t  e.  (
LSubSp `  L )  |  s  C_  t }
) )
2612, 25syl 14 . 2  |-  ( ph  ->  ( LSpan `  L )  =  ( s  e. 
~P ( Base `  L
)  |->  |^| { t  e.  ( LSubSp `  L )  |  s  C_  t } ) )
2716, 21, 263eqtr4d 2236 1  |-  ( ph  ->  ( LSpan `  K )  =  ( LSpan `  L
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   {crab 2476    C_ wss 3153   ~Pcpw 3601   |^|cint 3870    |-> cmpt 4090   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695  Scalarcsca 12698   .scvsca 12699   LSubSpclss 13848   LSpanclspn 13882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-lssm 13849  df-lsp 13883
This theorem is referenced by:  lidlrsppropdg  13991
  Copyright terms: Public domain W3C validator