ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsppropd Unicode version

Theorem lsppropd 14390
Description: If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.)
Hypotheses
Ref Expression
lsspropd.b1  |-  ( ph  ->  B  =  ( Base `  K ) )
lsspropd.b2  |-  ( ph  ->  B  =  ( Base `  L ) )
lsspropd.w  |-  ( ph  ->  B  C_  W )
lsspropd.p  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
lsspropd.s1  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  e.  W )
lsspropd.s2  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
lsspropd.p1  |-  ( ph  ->  P  =  ( Base `  (Scalar `  K )
) )
lsspropd.p2  |-  ( ph  ->  P  =  ( Base `  (Scalar `  L )
) )
lsppropd.v1  |-  ( ph  ->  K  e.  X )
lsppropd.v2  |-  ( ph  ->  L  e.  Y )
Assertion
Ref Expression
lsppropd  |-  ( ph  ->  ( LSpan `  K )  =  ( LSpan `  L
) )
Distinct variable groups:    x, y, B   
x, K, y    ph, x, y    x, W, y    x, L, y    x, P, y
Allowed substitution hints:    X( x, y)    Y( x, y)

Proof of Theorem lsppropd
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsspropd.b1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
2 lsspropd.b2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
31, 2eqtr3d 2264 . . . 4  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
43pweqd 3654 . . 3  |-  ( ph  ->  ~P ( Base `  K
)  =  ~P ( Base `  L ) )
5 lsspropd.w . . . . . 6  |-  ( ph  ->  B  C_  W )
6 lsspropd.p . . . . . 6  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
7 lsspropd.s1 . . . . . 6  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  e.  W )
8 lsspropd.s2 . . . . . 6  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
9 lsspropd.p1 . . . . . 6  |-  ( ph  ->  P  =  ( Base `  (Scalar `  K )
) )
10 lsspropd.p2 . . . . . 6  |-  ( ph  ->  P  =  ( Base `  (Scalar `  L )
) )
11 lsppropd.v1 . . . . . 6  |-  ( ph  ->  K  e.  X )
12 lsppropd.v2 . . . . . 6  |-  ( ph  ->  L  e.  Y )
131, 2, 5, 6, 7, 8, 9, 10, 11, 12lsspropdg 14389 . . . . 5  |-  ( ph  ->  ( LSubSp `  K )  =  ( LSubSp `  L
) )
1413rabeqdv 2793 . . . 4  |-  ( ph  ->  { t  e.  (
LSubSp `  K )  |  s  C_  t }  =  { t  e.  (
LSubSp `  L )  |  s  C_  t }
)
1514inteqd 3927 . . 3  |-  ( ph  ->  |^| { t  e.  ( LSubSp `  K )  |  s  C_  t }  =  |^| { t  e.  ( LSubSp `  L
)  |  s  C_  t } )
164, 15mpteq12dv 4165 . 2  |-  ( ph  ->  ( s  e.  ~P ( Base `  K )  |-> 
|^| { t  e.  (
LSubSp `  K )  |  s  C_  t }
)  =  ( s  e.  ~P ( Base `  L )  |->  |^| { t  e.  ( LSubSp `  L
)  |  s  C_  t } ) )
17 eqid 2229 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
18 eqid 2229 . . . 4  |-  ( LSubSp `  K )  =  (
LSubSp `  K )
19 eqid 2229 . . . 4  |-  ( LSpan `  K )  =  (
LSpan `  K )
2017, 18, 19lspfval 14346 . . 3  |-  ( K  e.  X  ->  ( LSpan `  K )  =  ( s  e.  ~P ( Base `  K )  |-> 
|^| { t  e.  (
LSubSp `  K )  |  s  C_  t }
) )
2111, 20syl 14 . 2  |-  ( ph  ->  ( LSpan `  K )  =  ( s  e. 
~P ( Base `  K
)  |->  |^| { t  e.  ( LSubSp `  K )  |  s  C_  t } ) )
22 eqid 2229 . . . 4  |-  ( Base `  L )  =  (
Base `  L )
23 eqid 2229 . . . 4  |-  ( LSubSp `  L )  =  (
LSubSp `  L )
24 eqid 2229 . . . 4  |-  ( LSpan `  L )  =  (
LSpan `  L )
2522, 23, 24lspfval 14346 . . 3  |-  ( L  e.  Y  ->  ( LSpan `  L )  =  ( s  e.  ~P ( Base `  L )  |-> 
|^| { t  e.  (
LSubSp `  L )  |  s  C_  t }
) )
2612, 25syl 14 . 2  |-  ( ph  ->  ( LSpan `  L )  =  ( s  e. 
~P ( Base `  L
)  |->  |^| { t  e.  ( LSubSp `  L )  |  s  C_  t } ) )
2716, 21, 263eqtr4d 2272 1  |-  ( ph  ->  ( LSpan `  K )  =  ( LSpan `  L
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   {crab 2512    C_ wss 3197   ~Pcpw 3649   |^|cint 3922    |-> cmpt 4144   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105  Scalarcsca 13108   .scvsca 13109   LSubSpclss 14310   LSpanclspn 14344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-lssm 14311  df-lsp 14345
This theorem is referenced by:  lidlrsppropdg  14453
  Copyright terms: Public domain W3C validator