ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsppropd Unicode version

Theorem lsppropd 13616
Description: If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.)
Hypotheses
Ref Expression
lsspropd.b1  |-  ( ph  ->  B  =  ( Base `  K ) )
lsspropd.b2  |-  ( ph  ->  B  =  ( Base `  L ) )
lsspropd.w  |-  ( ph  ->  B  C_  W )
lsspropd.p  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
lsspropd.s1  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  e.  W )
lsspropd.s2  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
lsspropd.p1  |-  ( ph  ->  P  =  ( Base `  (Scalar `  K )
) )
lsspropd.p2  |-  ( ph  ->  P  =  ( Base `  (Scalar `  L )
) )
lsppropd.v1  |-  ( ph  ->  K  e.  X )
lsppropd.v2  |-  ( ph  ->  L  e.  Y )
Assertion
Ref Expression
lsppropd  |-  ( ph  ->  ( LSpan `  K )  =  ( LSpan `  L
) )
Distinct variable groups:    x, y, B   
x, K, y    ph, x, y    x, W, y    x, L, y    x, P, y
Allowed substitution hints:    X( x, y)    Y( x, y)

Proof of Theorem lsppropd
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsspropd.b1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
2 lsspropd.b2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
31, 2eqtr3d 2222 . . . 4  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
43pweqd 3592 . . 3  |-  ( ph  ->  ~P ( Base `  K
)  =  ~P ( Base `  L ) )
5 lsspropd.w . . . . . 6  |-  ( ph  ->  B  C_  W )
6 lsspropd.p . . . . . 6  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
7 lsspropd.s1 . . . . . 6  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  e.  W )
8 lsspropd.s2 . . . . . 6  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
9 lsspropd.p1 . . . . . 6  |-  ( ph  ->  P  =  ( Base `  (Scalar `  K )
) )
10 lsspropd.p2 . . . . . 6  |-  ( ph  ->  P  =  ( Base `  (Scalar `  L )
) )
11 lsppropd.v1 . . . . . 6  |-  ( ph  ->  K  e.  X )
12 lsppropd.v2 . . . . . 6  |-  ( ph  ->  L  e.  Y )
131, 2, 5, 6, 7, 8, 9, 10, 11, 12lsspropdg 13615 . . . . 5  |-  ( ph  ->  ( LSubSp `  K )  =  ( LSubSp `  L
) )
1413rabeqdv 2743 . . . 4  |-  ( ph  ->  { t  e.  (
LSubSp `  K )  |  s  C_  t }  =  { t  e.  (
LSubSp `  L )  |  s  C_  t }
)
1514inteqd 3861 . . 3  |-  ( ph  ->  |^| { t  e.  ( LSubSp `  K )  |  s  C_  t }  =  |^| { t  e.  ( LSubSp `  L
)  |  s  C_  t } )
164, 15mpteq12dv 4097 . 2  |-  ( ph  ->  ( s  e.  ~P ( Base `  K )  |-> 
|^| { t  e.  (
LSubSp `  K )  |  s  C_  t }
)  =  ( s  e.  ~P ( Base `  L )  |->  |^| { t  e.  ( LSubSp `  L
)  |  s  C_  t } ) )
17 eqid 2187 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
18 eqid 2187 . . . 4  |-  ( LSubSp `  K )  =  (
LSubSp `  K )
19 eqid 2187 . . . 4  |-  ( LSpan `  K )  =  (
LSpan `  K )
2017, 18, 19lspfval 13572 . . 3  |-  ( K  e.  X  ->  ( LSpan `  K )  =  ( s  e.  ~P ( Base `  K )  |-> 
|^| { t  e.  (
LSubSp `  K )  |  s  C_  t }
) )
2111, 20syl 14 . 2  |-  ( ph  ->  ( LSpan `  K )  =  ( s  e. 
~P ( Base `  K
)  |->  |^| { t  e.  ( LSubSp `  K )  |  s  C_  t } ) )
22 eqid 2187 . . . 4  |-  ( Base `  L )  =  (
Base `  L )
23 eqid 2187 . . . 4  |-  ( LSubSp `  L )  =  (
LSubSp `  L )
24 eqid 2187 . . . 4  |-  ( LSpan `  L )  =  (
LSpan `  L )
2522, 23, 24lspfval 13572 . . 3  |-  ( L  e.  Y  ->  ( LSpan `  L )  =  ( s  e.  ~P ( Base `  L )  |-> 
|^| { t  e.  (
LSubSp `  L )  |  s  C_  t }
) )
2612, 25syl 14 . 2  |-  ( ph  ->  ( LSpan `  L )  =  ( s  e. 
~P ( Base `  L
)  |->  |^| { t  e.  ( LSubSp `  L )  |  s  C_  t } ) )
2716, 21, 263eqtr4d 2230 1  |-  ( ph  ->  ( LSpan `  K )  =  ( LSpan `  L
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   {crab 2469    C_ wss 3141   ~Pcpw 3587   |^|cint 3856    |-> cmpt 4076   ` cfv 5228  (class class class)co 5888   Basecbs 12475   +g cplusg 12550  Scalarcsca 12553   .scvsca 12554   LSubSpclss 13536   LSpanclspn 13570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-cnex 7915  ax-resscn 7916  ax-1re 7918  ax-addrcl 7921
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-inn 8933  df-ndx 12478  df-slot 12479  df-base 12481  df-lssm 13537  df-lsp 13571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator