| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > lsppropd | Unicode version | ||
| Description: If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.) | 
| Ref | Expression | 
|---|---|
| lsspropd.b1 | 
 | 
| lsspropd.b2 | 
 | 
| lsspropd.w | 
 | 
| lsspropd.p | 
 | 
| lsspropd.s1 | 
 | 
| lsspropd.s2 | 
 | 
| lsspropd.p1 | 
 | 
| lsspropd.p2 | 
 | 
| lsppropd.v1 | 
 | 
| lsppropd.v2 | 
 | 
| Ref | Expression | 
|---|---|
| lsppropd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lsspropd.b1 | 
. . . . 5
 | |
| 2 | lsspropd.b2 | 
. . . . 5
 | |
| 3 | 1, 2 | eqtr3d 2231 | 
. . . 4
 | 
| 4 | 3 | pweqd 3610 | 
. . 3
 | 
| 5 | lsspropd.w | 
. . . . . 6
 | |
| 6 | lsspropd.p | 
. . . . . 6
 | |
| 7 | lsspropd.s1 | 
. . . . . 6
 | |
| 8 | lsspropd.s2 | 
. . . . . 6
 | |
| 9 | lsspropd.p1 | 
. . . . . 6
 | |
| 10 | lsspropd.p2 | 
. . . . . 6
 | |
| 11 | lsppropd.v1 | 
. . . . . 6
 | |
| 12 | lsppropd.v2 | 
. . . . . 6
 | |
| 13 | 1, 2, 5, 6, 7, 8, 9, 10, 11, 12 | lsspropdg 13987 | 
. . . . 5
 | 
| 14 | 13 | rabeqdv 2757 | 
. . . 4
 | 
| 15 | 14 | inteqd 3879 | 
. . 3
 | 
| 16 | 4, 15 | mpteq12dv 4115 | 
. 2
 | 
| 17 | eqid 2196 | 
. . . 4
 | |
| 18 | eqid 2196 | 
. . . 4
 | |
| 19 | eqid 2196 | 
. . . 4
 | |
| 20 | 17, 18, 19 | lspfval 13944 | 
. . 3
 | 
| 21 | 11, 20 | syl 14 | 
. 2
 | 
| 22 | eqid 2196 | 
. . . 4
 | |
| 23 | eqid 2196 | 
. . . 4
 | |
| 24 | eqid 2196 | 
. . . 4
 | |
| 25 | 22, 23, 24 | lspfval 13944 | 
. . 3
 | 
| 26 | 12, 25 | syl 14 | 
. 2
 | 
| 27 | 16, 21, 26 | 3eqtr4d 2239 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-inn 8991 df-ndx 12681 df-slot 12682 df-base 12684 df-lssm 13909 df-lsp 13943 | 
| This theorem is referenced by: lidlrsppropdg 14051 | 
| Copyright terms: Public domain | W3C validator |