| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lsppropd | Unicode version | ||
| Description: If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.) |
| Ref | Expression |
|---|---|
| lsspropd.b1 |
|
| lsspropd.b2 |
|
| lsspropd.w |
|
| lsspropd.p |
|
| lsspropd.s1 |
|
| lsspropd.s2 |
|
| lsspropd.p1 |
|
| lsspropd.p2 |
|
| lsppropd.v1 |
|
| lsppropd.v2 |
|
| Ref | Expression |
|---|---|
| lsppropd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsspropd.b1 |
. . . . 5
| |
| 2 | lsspropd.b2 |
. . . . 5
| |
| 3 | 1, 2 | eqtr3d 2264 |
. . . 4
|
| 4 | 3 | pweqd 3654 |
. . 3
|
| 5 | lsspropd.w |
. . . . . 6
| |
| 6 | lsspropd.p |
. . . . . 6
| |
| 7 | lsspropd.s1 |
. . . . . 6
| |
| 8 | lsspropd.s2 |
. . . . . 6
| |
| 9 | lsspropd.p1 |
. . . . . 6
| |
| 10 | lsspropd.p2 |
. . . . . 6
| |
| 11 | lsppropd.v1 |
. . . . . 6
| |
| 12 | lsppropd.v2 |
. . . . . 6
| |
| 13 | 1, 2, 5, 6, 7, 8, 9, 10, 11, 12 | lsspropdg 14389 |
. . . . 5
|
| 14 | 13 | rabeqdv 2793 |
. . . 4
|
| 15 | 14 | inteqd 3927 |
. . 3
|
| 16 | 4, 15 | mpteq12dv 4165 |
. 2
|
| 17 | eqid 2229 |
. . . 4
| |
| 18 | eqid 2229 |
. . . 4
| |
| 19 | eqid 2229 |
. . . 4
| |
| 20 | 17, 18, 19 | lspfval 14346 |
. . 3
|
| 21 | 11, 20 | syl 14 |
. 2
|
| 22 | eqid 2229 |
. . . 4
| |
| 23 | eqid 2229 |
. . . 4
| |
| 24 | eqid 2229 |
. . . 4
| |
| 25 | 22, 23, 24 | lspfval 14346 |
. . 3
|
| 26 | 12, 25 | syl 14 |
. 2
|
| 27 | 16, 21, 26 | 3eqtr4d 2272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-inn 9107 df-ndx 13030 df-slot 13031 df-base 13033 df-lssm 14311 df-lsp 14345 |
| This theorem is referenced by: lidlrsppropdg 14453 |
| Copyright terms: Public domain | W3C validator |