ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspfval Unicode version

Theorem lspfval 13944
Description: The span function for a left vector space (or a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v  |-  V  =  ( Base `  W
)
lspval.s  |-  S  =  ( LSubSp `  W )
lspval.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspfval  |-  ( W  e.  X  ->  N  =  ( s  e. 
~P V  |->  |^| { t  e.  S  |  s 
C_  t } ) )
Distinct variable groups:    t, s, S    V, s, t    W, s
Allowed substitution hints:    N( t, s)    W( t)    X( t, s)

Proof of Theorem lspfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 lspval.n . 2  |-  N  =  ( LSpan `  W )
2 df-lsp 13943 . . 3  |-  LSpan  =  ( w  e.  _V  |->  ( s  e.  ~P ( Base `  w )  |->  |^|
{ t  e.  (
LSubSp `  w )  |  s  C_  t }
) )
3 fveq2 5558 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
4 lspval.v . . . . . 6  |-  V  =  ( Base `  W
)
53, 4eqtr4di 2247 . . . . 5  |-  ( w  =  W  ->  ( Base `  w )  =  V )
65pweqd 3610 . . . 4  |-  ( w  =  W  ->  ~P ( Base `  w )  =  ~P V )
7 fveq2 5558 . . . . . . 7  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  ( LSubSp `  W )
)
8 lspval.s . . . . . . 7  |-  S  =  ( LSubSp `  W )
97, 8eqtr4di 2247 . . . . . 6  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  S )
109rabeqdv 2757 . . . . 5  |-  ( w  =  W  ->  { t  e.  ( LSubSp `  w
)  |  s  C_  t }  =  {
t  e.  S  | 
s  C_  t }
)
1110inteqd 3879 . . . 4  |-  ( w  =  W  ->  |^| { t  e.  ( LSubSp `  w
)  |  s  C_  t }  =  |^| { t  e.  S  | 
s  C_  t }
)
126, 11mpteq12dv 4115 . . 3  |-  ( w  =  W  ->  (
s  e.  ~P ( Base `  w )  |->  |^|
{ t  e.  (
LSubSp `  w )  |  s  C_  t }
)  =  ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } ) )
13 elex 2774 . . 3  |-  ( W  e.  X  ->  W  e.  _V )
14 basfn 12736 . . . . . . 7  |-  Base  Fn  _V
15 funfvex 5575 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
1615funfni 5358 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
1714, 13, 16sylancr 414 . . . . . 6  |-  ( W  e.  X  ->  ( Base `  W )  e. 
_V )
184, 17eqeltrid 2283 . . . . 5  |-  ( W  e.  X  ->  V  e.  _V )
1918pwexd 4214 . . . 4  |-  ( W  e.  X  ->  ~P V  e.  _V )
2019mptexd 5789 . . 3  |-  ( W  e.  X  ->  (
s  e.  ~P V  |-> 
|^| { t  e.  S  |  s  C_  t } )  e.  _V )
212, 12, 13, 20fvmptd3 5655 . 2  |-  ( W  e.  X  ->  ( LSpan `  W )  =  ( s  e.  ~P V  |->  |^| { t  e.  S  |  s  C_  t } ) )
221, 21eqtrid 2241 1  |-  ( W  e.  X  ->  N  =  ( s  e. 
~P V  |->  |^| { t  e.  S  |  s 
C_  t } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   {crab 2479   _Vcvv 2763    C_ wss 3157   ~Pcpw 3605   |^|cint 3874    |-> cmpt 4094    Fn wfn 5253   ` cfv 5258   Basecbs 12678   LSubSpclss 13908   LSpanclspn 13942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684  df-lsp 13943
This theorem is referenced by:  lspf  13945  lspval  13946  lspex  13951  lsppropd  13988
  Copyright terms: Public domain W3C validator