ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspfval Unicode version

Theorem lspfval 14220
Description: The span function for a left vector space (or a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v  |-  V  =  ( Base `  W
)
lspval.s  |-  S  =  ( LSubSp `  W )
lspval.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspfval  |-  ( W  e.  X  ->  N  =  ( s  e. 
~P V  |->  |^| { t  e.  S  |  s 
C_  t } ) )
Distinct variable groups:    t, s, S    V, s, t    W, s
Allowed substitution hints:    N( t, s)    W( t)    X( t, s)

Proof of Theorem lspfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 lspval.n . 2  |-  N  =  ( LSpan `  W )
2 df-lsp 14219 . . 3  |-  LSpan  =  ( w  e.  _V  |->  ( s  e.  ~P ( Base `  w )  |->  |^|
{ t  e.  (
LSubSp `  w )  |  s  C_  t }
) )
3 fveq2 5588 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
4 lspval.v . . . . . 6  |-  V  =  ( Base `  W
)
53, 4eqtr4di 2257 . . . . 5  |-  ( w  =  W  ->  ( Base `  w )  =  V )
65pweqd 3625 . . . 4  |-  ( w  =  W  ->  ~P ( Base `  w )  =  ~P V )
7 fveq2 5588 . . . . . . 7  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  ( LSubSp `  W )
)
8 lspval.s . . . . . . 7  |-  S  =  ( LSubSp `  W )
97, 8eqtr4di 2257 . . . . . 6  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  S )
109rabeqdv 2767 . . . . 5  |-  ( w  =  W  ->  { t  e.  ( LSubSp `  w
)  |  s  C_  t }  =  {
t  e.  S  | 
s  C_  t }
)
1110inteqd 3895 . . . 4  |-  ( w  =  W  ->  |^| { t  e.  ( LSubSp `  w
)  |  s  C_  t }  =  |^| { t  e.  S  | 
s  C_  t }
)
126, 11mpteq12dv 4133 . . 3  |-  ( w  =  W  ->  (
s  e.  ~P ( Base `  w )  |->  |^|
{ t  e.  (
LSubSp `  w )  |  s  C_  t }
)  =  ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } ) )
13 elex 2785 . . 3  |-  ( W  e.  X  ->  W  e.  _V )
14 basfn 12960 . . . . . . 7  |-  Base  Fn  _V
15 funfvex 5605 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
1615funfni 5384 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
1714, 13, 16sylancr 414 . . . . . 6  |-  ( W  e.  X  ->  ( Base `  W )  e. 
_V )
184, 17eqeltrid 2293 . . . . 5  |-  ( W  e.  X  ->  V  e.  _V )
1918pwexd 4232 . . . 4  |-  ( W  e.  X  ->  ~P V  e.  _V )
2019mptexd 5823 . . 3  |-  ( W  e.  X  ->  (
s  e.  ~P V  |-> 
|^| { t  e.  S  |  s  C_  t } )  e.  _V )
212, 12, 13, 20fvmptd3 5685 . 2  |-  ( W  e.  X  ->  ( LSpan `  W )  =  ( s  e.  ~P V  |->  |^| { t  e.  S  |  s  C_  t } ) )
221, 21eqtrid 2251 1  |-  ( W  e.  X  ->  N  =  ( s  e. 
~P V  |->  |^| { t  e.  S  |  s 
C_  t } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   {crab 2489   _Vcvv 2773    C_ wss 3170   ~Pcpw 3620   |^|cint 3890    |-> cmpt 4112    Fn wfn 5274   ` cfv 5279   Basecbs 12902   LSubSpclss 14184   LSpanclspn 14218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-cnex 8031  ax-resscn 8032  ax-1re 8034  ax-addrcl 8037
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-inn 9052  df-ndx 12905  df-slot 12906  df-base 12908  df-lsp 14219
This theorem is referenced by:  lspf  14221  lspval  14222  lspex  14227  lsppropd  14264
  Copyright terms: Public domain W3C validator