ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspfval Unicode version

Theorem lspfval 13884
Description: The span function for a left vector space (or a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v  |-  V  =  ( Base `  W
)
lspval.s  |-  S  =  ( LSubSp `  W )
lspval.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspfval  |-  ( W  e.  X  ->  N  =  ( s  e. 
~P V  |->  |^| { t  e.  S  |  s 
C_  t } ) )
Distinct variable groups:    t, s, S    V, s, t    W, s
Allowed substitution hints:    N( t, s)    W( t)    X( t, s)

Proof of Theorem lspfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 lspval.n . 2  |-  N  =  ( LSpan `  W )
2 df-lsp 13883 . . 3  |-  LSpan  =  ( w  e.  _V  |->  ( s  e.  ~P ( Base `  w )  |->  |^|
{ t  e.  (
LSubSp `  w )  |  s  C_  t }
) )
3 fveq2 5554 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
4 lspval.v . . . . . 6  |-  V  =  ( Base `  W
)
53, 4eqtr4di 2244 . . . . 5  |-  ( w  =  W  ->  ( Base `  w )  =  V )
65pweqd 3606 . . . 4  |-  ( w  =  W  ->  ~P ( Base `  w )  =  ~P V )
7 fveq2 5554 . . . . . . 7  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  ( LSubSp `  W )
)
8 lspval.s . . . . . . 7  |-  S  =  ( LSubSp `  W )
97, 8eqtr4di 2244 . . . . . 6  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  S )
109rabeqdv 2754 . . . . 5  |-  ( w  =  W  ->  { t  e.  ( LSubSp `  w
)  |  s  C_  t }  =  {
t  e.  S  | 
s  C_  t }
)
1110inteqd 3875 . . . 4  |-  ( w  =  W  ->  |^| { t  e.  ( LSubSp `  w
)  |  s  C_  t }  =  |^| { t  e.  S  | 
s  C_  t }
)
126, 11mpteq12dv 4111 . . 3  |-  ( w  =  W  ->  (
s  e.  ~P ( Base `  w )  |->  |^|
{ t  e.  (
LSubSp `  w )  |  s  C_  t }
)  =  ( s  e.  ~P V  |->  |^|
{ t  e.  S  |  s  C_  t } ) )
13 elex 2771 . . 3  |-  ( W  e.  X  ->  W  e.  _V )
14 basfn 12676 . . . . . . 7  |-  Base  Fn  _V
15 funfvex 5571 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
1615funfni 5354 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
1714, 13, 16sylancr 414 . . . . . 6  |-  ( W  e.  X  ->  ( Base `  W )  e. 
_V )
184, 17eqeltrid 2280 . . . . 5  |-  ( W  e.  X  ->  V  e.  _V )
1918pwexd 4210 . . . 4  |-  ( W  e.  X  ->  ~P V  e.  _V )
2019mptexd 5785 . . 3  |-  ( W  e.  X  ->  (
s  e.  ~P V  |-> 
|^| { t  e.  S  |  s  C_  t } )  e.  _V )
212, 12, 13, 20fvmptd3 5651 . 2  |-  ( W  e.  X  ->  ( LSpan `  W )  =  ( s  e.  ~P V  |->  |^| { t  e.  S  |  s  C_  t } ) )
221, 21eqtrid 2238 1  |-  ( W  e.  X  ->  N  =  ( s  e. 
~P V  |->  |^| { t  e.  S  |  s 
C_  t } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   {crab 2476   _Vcvv 2760    C_ wss 3153   ~Pcpw 3601   |^|cint 3870    |-> cmpt 4090    Fn wfn 5249   ` cfv 5254   Basecbs 12618   LSubSpclss 13848   LSpanclspn 13882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-lsp 13883
This theorem is referenced by:  lspf  13885  lspval  13886  lspex  13891  lsppropd  13928
  Copyright terms: Public domain W3C validator