ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfphi2 Unicode version

Theorem dfphi2 11930
Description: Alternate definition of the Euler  phi function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
dfphi2  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( `  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
Distinct variable group:    x, N

Proof of Theorem dfphi2
StepHypRef Expression
1 elnn1uz2 9427 . 2  |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 )
) )
2 phi1 11929 . . . . 5  |-  ( phi `  1 )  =  1
3 0z 9088 . . . . . 6  |-  0  e.  ZZ
4 hashsng 10575 . . . . . 6  |-  ( 0  e.  ZZ  ->  ( `  { 0 } )  =  1 )
53, 4ax-mp 5 . . . . 5  |-  ( `  {
0 } )  =  1
6 rabid2 2610 . . . . . . 7  |-  ( { 0 }  =  {
x  e.  { 0 }  |  ( x  gcd  1 )  =  1 }  <->  A. x  e.  { 0 }  (
x  gcd  1 )  =  1 )
7 elsni 3549 . . . . . . . . 9  |-  ( x  e.  { 0 }  ->  x  =  0 )
87oveq1d 5796 . . . . . . . 8  |-  ( x  e.  { 0 }  ->  ( x  gcd  1 )  =  ( 0  gcd  1 ) )
9 gcd1 11709 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  (
0  gcd  1 )  =  1 )
103, 9ax-mp 5 . . . . . . . 8  |-  ( 0  gcd  1 )  =  1
118, 10eqtrdi 2189 . . . . . . 7  |-  ( x  e.  { 0 }  ->  ( x  gcd  1 )  =  1 )
126, 11mprgbir 2493 . . . . . 6  |-  { 0 }  =  { x  e.  { 0 }  | 
( x  gcd  1
)  =  1 }
1312fveq2i 5431 . . . . 5  |-  ( `  {
0 } )  =  ( `  { x  e.  { 0 }  | 
( x  gcd  1
)  =  1 } )
142, 5, 133eqtr2i 2167 . . . 4  |-  ( phi `  1 )  =  ( `  { x  e.  { 0 }  | 
( x  gcd  1
)  =  1 } )
15 fveq2 5428 . . . 4  |-  ( N  =  1  ->  ( phi `  N )  =  ( phi `  1
) )
16 oveq2 5789 . . . . . . 7  |-  ( N  =  1  ->  (
0..^ N )  =  ( 0..^ 1 ) )
17 fzo01 10023 . . . . . . 7  |-  ( 0..^ 1 )  =  {
0 }
1816, 17eqtrdi 2189 . . . . . 6  |-  ( N  =  1  ->  (
0..^ N )  =  { 0 } )
19 oveq2 5789 . . . . . . 7  |-  ( N  =  1  ->  (
x  gcd  N )  =  ( x  gcd  1 ) )
2019eqeq1d 2149 . . . . . 6  |-  ( N  =  1  ->  (
( x  gcd  N
)  =  1  <->  (
x  gcd  1 )  =  1 ) )
2118, 20rabeqbidv 2684 . . . . 5  |-  ( N  =  1  ->  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  =  { x  e. 
{ 0 }  | 
( x  gcd  1
)  =  1 } )
2221fveq2d 5432 . . . 4  |-  ( N  =  1  ->  ( `  { x  e.  ( 0..^ N )  |  ( x  gcd  N
)  =  1 } )  =  ( `  {
x  e.  { 0 }  |  ( x  gcd  1 )  =  1 } ) )
2314, 15, 223eqtr4a 2199 . . 3  |-  ( N  =  1  ->  ( phi `  N )  =  ( `  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
24 eluz2nn 9387 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
25 phival 11923 . . . . 5  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
2624, 25syl 14 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( phi `  N )  =  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } ) )
27 fzossfz 9972 . . . . . . . . . . 11  |-  ( 1..^ N )  C_  (
1 ... N )
2827a1i 9 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 1..^ N )  C_  (
1 ... N ) )
29 sseqin2 3299 . . . . . . . . . 10  |-  ( ( 1..^ N )  C_  ( 1 ... N
)  <->  ( ( 1 ... N )  i^i  ( 1..^ N ) )  =  ( 1..^ N ) )
3028, 29sylib 121 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( (
1 ... N )  i^i  ( 1..^ N ) )  =  ( 1..^ N ) )
31 fzo0ss1 9981 . . . . . . . . . 10  |-  ( 1..^ N )  C_  (
0..^ N )
32 sseqin2 3299 . . . . . . . . . 10  |-  ( ( 1..^ N )  C_  ( 0..^ N )  <->  ( (
0..^ N )  i^i  ( 1..^ N ) )  =  ( 1..^ N ) )
3331, 32mpbi 144 . . . . . . . . 9  |-  ( ( 0..^ N )  i^i  ( 1..^ N ) )  =  ( 1..^ N )
3430, 33eqtr4di 2191 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( (
1 ... N )  i^i  ( 1..^ N ) )  =  ( ( 0..^ N )  i^i  ( 1..^ N ) ) )
3534rabeqdv 2683 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( ( 1 ... N )  i^i  (
1..^ N ) )  |  ( x  gcd  N )  =  1 }  =  { x  e.  ( ( 0..^ N )  i^i  ( 1..^ N ) )  |  ( x  gcd  N
)  =  1 } )
36 inrab2 3353 . . . . . . 7  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  i^i  ( 1..^ N ) )  =  {
x  e.  ( ( 1 ... N )  i^i  ( 1..^ N ) )  |  ( x  gcd  N )  =  1 }
37 inrab2 3353 . . . . . . 7  |-  ( { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  i^i  ( 1..^ N ) )  =  { x  e.  ( ( 0..^ N )  i^i  ( 1..^ N ) )  |  ( x  gcd  N
)  =  1 }
3835, 36, 373eqtr4g 2198 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  i^i  ( 1..^ N ) )  =  ( { x  e.  ( 0..^ N )  |  ( x  gcd  N
)  =  1 }  i^i  ( 1..^ N ) ) )
39 phibndlem 11926 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... ( N  - 
1 ) ) )
40 eluzelz 9358 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
41 fzoval 9955 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
1..^ N )  =  ( 1 ... ( N  -  1 ) ) )
4240, 41syl 14 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 1..^ N )  =  ( 1 ... ( N  -  1 ) ) )
4339, 42sseqtrrd 3140 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1..^ N ) )
44 df-ss 3088 . . . . . . 7  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1..^ N )  <->  ( { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  i^i  (
1..^ N ) )  =  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )
4543, 44sylib 121 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  i^i  ( 1..^ N ) )  =  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )
46 gcd0id 11701 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  =  ( abs `  N
) )
4740, 46syl 14 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 0  gcd  N )  =  ( abs `  N
) )
48 eluzelre 9359 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  RR )
49 eluzge2nn0 9390 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN0 )
5049nn0ge0d 9056 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  2
)  ->  0  <_  N )
5148, 50absidd 10970 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( abs `  N )  =  N )
5247, 51eqtrd 2173 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 0  gcd  N )  =  N )
53 eluz2b3 9424 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )
5453simprbi 273 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  =/=  1 )
5552, 54eqnetrd 2333 . . . . . . . . . . . . 13  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 0  gcd  N )  =/=  1 )
5655adantr 274 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( 0  gcd  N )  =/=  1 )
577oveq1d 5796 . . . . . . . . . . . . . 14  |-  ( x  e.  { 0 }  ->  ( x  gcd  N )  =  ( 0  gcd  N ) )
5857, 17eleq2s 2235 . . . . . . . . . . . . 13  |-  ( x  e.  ( 0..^ 1 )  ->  ( x  gcd  N )  =  ( 0  gcd  N ) )
5958neeq1d 2327 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ 1 )  ->  ( (
x  gcd  N )  =/=  1  <->  ( 0  gcd 
N )  =/=  1
) )
6056, 59syl5ibrcom 156 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( x  e.  ( 0..^ 1 )  ->  ( x  gcd  N )  =/=  1 ) )
6160necon2bd 2367 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( (
x  gcd  N )  =  1  ->  -.  x  e.  ( 0..^ 1 ) ) )
62 simpr 109 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  x  e.  ( 0..^ N ) )
63 1z 9103 . . . . . . . . . . . 12  |-  1  e.  ZZ
64 fzospliti 9983 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 0..^ N )  /\  1  e.  ZZ )  ->  (
x  e.  ( 0..^ 1 )  \/  x  e.  ( 1..^ N ) ) )
6562, 63, 64sylancl 410 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( x  e.  ( 0..^ 1 )  \/  x  e.  ( 1..^ N ) ) )
6665ord 714 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( -.  x  e.  ( 0..^ 1 )  ->  x  e.  ( 1..^ N ) ) )
6761, 66syld 45 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( (
x  gcd  N )  =  1  ->  x  e.  ( 1..^ N ) ) )
6867ralrimiva 2508 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  A. x  e.  ( 0..^ N ) ( ( x  gcd  N )  =  1  ->  x  e.  ( 1..^ N ) ) )
69 rabss 3178 . . . . . . . 8  |-  ( { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  C_  ( 1..^ N )  <->  A. x  e.  ( 0..^ N ) ( ( x  gcd  N )  =  1  ->  x  e.  ( 1..^ N ) ) )
7068, 69sylibr 133 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } 
C_  ( 1..^ N ) )
71 df-ss 3088 . . . . . . 7  |-  ( { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  C_  ( 1..^ N )  <->  ( {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  i^i  ( 1..^ N ) )  =  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } )
7270, 71sylib 121 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  i^i  ( 1..^ N ) )  =  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } )
7338, 45, 723eqtr3d 2181 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  =  {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } )
7473fveq2d 5432 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  =  ( `  {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
7526, 74eqtrd 2173 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( phi `  N )  =  ( `  { x  e.  ( 0..^ N )  |  ( x  gcd  N
)  =  1 } ) )
7623, 75jaoi 706 . 2  |-  ( ( N  =  1  \/  N  e.  ( ZZ>= ` 
2 ) )  -> 
( phi `  N
)  =  ( `  {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
771, 76sylbi 120 1  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( `  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1332    e. wcel 1481    =/= wne 2309   A.wral 2417   {crab 2421    i^i cin 3074    C_ wss 3075   {csn 3531   ` cfv 5130  (class class class)co 5781   0cc0 7643   1c1 7644    - cmin 7956   NNcn 8743   2c2 8794   ZZcz 9077   ZZ>=cuz 9349   ...cfz 9820  ..^cfzo 9949  ♯chash 10552   abscabs 10800    gcd cgcd 11669   phicphi 11920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761  ax-arch 7762  ax-caucvg 7763
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-po 4225  df-iso 4226  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-frec 6295  df-1o 6320  df-er 6436  df-en 6642  df-dom 6643  df-fin 6644  df-sup 6878  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-3 8803  df-4 8804  df-n0 9001  df-z 9078  df-uz 9350  df-q 9438  df-rp 9470  df-fz 9821  df-fzo 9950  df-fl 10073  df-mod 10126  df-seqfrec 10249  df-exp 10323  df-ihash 10553  df-cj 10645  df-re 10646  df-im 10647  df-rsqrt 10801  df-abs 10802  df-dvds 11528  df-gcd 11670  df-phi 11921
This theorem is referenced by:  phimullem  11935  hashgcdeq  11938
  Copyright terms: Public domain W3C validator