ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfphi2 Unicode version

Theorem dfphi2 12413
Description: Alternate definition of the Euler  phi function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
dfphi2  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( `  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
Distinct variable group:    x, N

Proof of Theorem dfphi2
StepHypRef Expression
1 elnn1uz2 9698 . 2  |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 )
) )
2 phi1 12412 . . . . 5  |-  ( phi `  1 )  =  1
3 0z 9354 . . . . . 6  |-  0  e.  ZZ
4 hashsng 10907 . . . . . 6  |-  ( 0  e.  ZZ  ->  ( `  { 0 } )  =  1 )
53, 4ax-mp 5 . . . . 5  |-  ( `  {
0 } )  =  1
6 rabid2 2674 . . . . . . 7  |-  ( { 0 }  =  {
x  e.  { 0 }  |  ( x  gcd  1 )  =  1 }  <->  A. x  e.  { 0 }  (
x  gcd  1 )  =  1 )
7 elsni 3641 . . . . . . . . 9  |-  ( x  e.  { 0 }  ->  x  =  0 )
87oveq1d 5940 . . . . . . . 8  |-  ( x  e.  { 0 }  ->  ( x  gcd  1 )  =  ( 0  gcd  1 ) )
9 gcd1 12179 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  (
0  gcd  1 )  =  1 )
103, 9ax-mp 5 . . . . . . . 8  |-  ( 0  gcd  1 )  =  1
118, 10eqtrdi 2245 . . . . . . 7  |-  ( x  e.  { 0 }  ->  ( x  gcd  1 )  =  1 )
126, 11mprgbir 2555 . . . . . 6  |-  { 0 }  =  { x  e.  { 0 }  | 
( x  gcd  1
)  =  1 }
1312fveq2i 5564 . . . . 5  |-  ( `  {
0 } )  =  ( `  { x  e.  { 0 }  | 
( x  gcd  1
)  =  1 } )
142, 5, 133eqtr2i 2223 . . . 4  |-  ( phi `  1 )  =  ( `  { x  e.  { 0 }  | 
( x  gcd  1
)  =  1 } )
15 fveq2 5561 . . . 4  |-  ( N  =  1  ->  ( phi `  N )  =  ( phi `  1
) )
16 oveq2 5933 . . . . . . 7  |-  ( N  =  1  ->  (
0..^ N )  =  ( 0..^ 1 ) )
17 fzo01 10309 . . . . . . 7  |-  ( 0..^ 1 )  =  {
0 }
1816, 17eqtrdi 2245 . . . . . 6  |-  ( N  =  1  ->  (
0..^ N )  =  { 0 } )
19 oveq2 5933 . . . . . . 7  |-  ( N  =  1  ->  (
x  gcd  N )  =  ( x  gcd  1 ) )
2019eqeq1d 2205 . . . . . 6  |-  ( N  =  1  ->  (
( x  gcd  N
)  =  1  <->  (
x  gcd  1 )  =  1 ) )
2118, 20rabeqbidv 2758 . . . . 5  |-  ( N  =  1  ->  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  =  { x  e. 
{ 0 }  | 
( x  gcd  1
)  =  1 } )
2221fveq2d 5565 . . . 4  |-  ( N  =  1  ->  ( `  { x  e.  ( 0..^ N )  |  ( x  gcd  N
)  =  1 } )  =  ( `  {
x  e.  { 0 }  |  ( x  gcd  1 )  =  1 } ) )
2314, 15, 223eqtr4a 2255 . . 3  |-  ( N  =  1  ->  ( phi `  N )  =  ( `  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
24 eluz2nn 9657 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
25 phival 12406 . . . . 5  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
2624, 25syl 14 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( phi `  N )  =  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } ) )
27 fzossfz 10258 . . . . . . . . . . 11  |-  ( 1..^ N )  C_  (
1 ... N )
2827a1i 9 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 1..^ N )  C_  (
1 ... N ) )
29 sseqin2 3383 . . . . . . . . . 10  |-  ( ( 1..^ N )  C_  ( 1 ... N
)  <->  ( ( 1 ... N )  i^i  ( 1..^ N ) )  =  ( 1..^ N ) )
3028, 29sylib 122 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( (
1 ... N )  i^i  ( 1..^ N ) )  =  ( 1..^ N ) )
31 fzo0ss1 10267 . . . . . . . . . 10  |-  ( 1..^ N )  C_  (
0..^ N )
32 sseqin2 3383 . . . . . . . . . 10  |-  ( ( 1..^ N )  C_  ( 0..^ N )  <->  ( (
0..^ N )  i^i  ( 1..^ N ) )  =  ( 1..^ N ) )
3331, 32mpbi 145 . . . . . . . . 9  |-  ( ( 0..^ N )  i^i  ( 1..^ N ) )  =  ( 1..^ N )
3430, 33eqtr4di 2247 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( (
1 ... N )  i^i  ( 1..^ N ) )  =  ( ( 0..^ N )  i^i  ( 1..^ N ) ) )
3534rabeqdv 2757 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( ( 1 ... N )  i^i  (
1..^ N ) )  |  ( x  gcd  N )  =  1 }  =  { x  e.  ( ( 0..^ N )  i^i  ( 1..^ N ) )  |  ( x  gcd  N
)  =  1 } )
36 inrab2 3437 . . . . . . 7  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  i^i  ( 1..^ N ) )  =  {
x  e.  ( ( 1 ... N )  i^i  ( 1..^ N ) )  |  ( x  gcd  N )  =  1 }
37 inrab2 3437 . . . . . . 7  |-  ( { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  i^i  ( 1..^ N ) )  =  { x  e.  ( ( 0..^ N )  i^i  ( 1..^ N ) )  |  ( x  gcd  N
)  =  1 }
3835, 36, 373eqtr4g 2254 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  i^i  ( 1..^ N ) )  =  ( { x  e.  ( 0..^ N )  |  ( x  gcd  N
)  =  1 }  i^i  ( 1..^ N ) ) )
39 phibndlem 12409 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... ( N  - 
1 ) ) )
40 eluzelz 9627 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
41 fzoval 10240 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
1..^ N )  =  ( 1 ... ( N  -  1 ) ) )
4240, 41syl 14 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 1..^ N )  =  ( 1 ... ( N  -  1 ) ) )
4339, 42sseqtrrd 3223 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1..^ N ) )
44 df-ss 3170 . . . . . . 7  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1..^ N )  <->  ( { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  i^i  (
1..^ N ) )  =  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )
4543, 44sylib 122 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  i^i  ( 1..^ N ) )  =  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )
46 gcd0id 12171 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  =  ( abs `  N
) )
4740, 46syl 14 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 0  gcd  N )  =  ( abs `  N
) )
48 eluzelre 9628 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  RR )
49 eluzge2nn0 9660 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN0 )
5049nn0ge0d 9322 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  2
)  ->  0  <_  N )
5148, 50absidd 11349 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( abs `  N )  =  N )
5247, 51eqtrd 2229 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 0  gcd  N )  =  N )
53 eluz2b3 9695 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )
5453simprbi 275 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  =/=  1 )
5552, 54eqnetrd 2391 . . . . . . . . . . . . 13  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 0  gcd  N )  =/=  1 )
5655adantr 276 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( 0  gcd  N )  =/=  1 )
577oveq1d 5940 . . . . . . . . . . . . . 14  |-  ( x  e.  { 0 }  ->  ( x  gcd  N )  =  ( 0  gcd  N ) )
5857, 17eleq2s 2291 . . . . . . . . . . . . 13  |-  ( x  e.  ( 0..^ 1 )  ->  ( x  gcd  N )  =  ( 0  gcd  N ) )
5958neeq1d 2385 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ 1 )  ->  ( (
x  gcd  N )  =/=  1  <->  ( 0  gcd 
N )  =/=  1
) )
6056, 59syl5ibrcom 157 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( x  e.  ( 0..^ 1 )  ->  ( x  gcd  N )  =/=  1 ) )
6160necon2bd 2425 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( (
x  gcd  N )  =  1  ->  -.  x  e.  ( 0..^ 1 ) ) )
62 simpr 110 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  x  e.  ( 0..^ N ) )
63 1z 9369 . . . . . . . . . . . 12  |-  1  e.  ZZ
64 fzospliti 10269 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 0..^ N )  /\  1  e.  ZZ )  ->  (
x  e.  ( 0..^ 1 )  \/  x  e.  ( 1..^ N ) ) )
6562, 63, 64sylancl 413 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( x  e.  ( 0..^ 1 )  \/  x  e.  ( 1..^ N ) ) )
6665ord 725 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( -.  x  e.  ( 0..^ 1 )  ->  x  e.  ( 1..^ N ) ) )
6761, 66syld 45 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( (
x  gcd  N )  =  1  ->  x  e.  ( 1..^ N ) ) )
6867ralrimiva 2570 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  A. x  e.  ( 0..^ N ) ( ( x  gcd  N )  =  1  ->  x  e.  ( 1..^ N ) ) )
69 rabss 3261 . . . . . . . 8  |-  ( { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  C_  ( 1..^ N )  <->  A. x  e.  ( 0..^ N ) ( ( x  gcd  N )  =  1  ->  x  e.  ( 1..^ N ) ) )
7068, 69sylibr 134 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } 
C_  ( 1..^ N ) )
71 df-ss 3170 . . . . . . 7  |-  ( { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  C_  ( 1..^ N )  <->  ( {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  i^i  ( 1..^ N ) )  =  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } )
7270, 71sylib 122 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  i^i  ( 1..^ N ) )  =  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } )
7338, 45, 723eqtr3d 2237 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  =  {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } )
7473fveq2d 5565 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  =  ( `  {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
7526, 74eqtrd 2229 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( phi `  N )  =  ( `  { x  e.  ( 0..^ N )  |  ( x  gcd  N
)  =  1 } ) )
7623, 75jaoi 717 . 2  |-  ( ( N  =  1  \/  N  e.  ( ZZ>= ` 
2 ) )  -> 
( phi `  N
)  =  ( `  {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
771, 76sylbi 121 1  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( `  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   {crab 2479    i^i cin 3156    C_ wss 3157   {csn 3623   ` cfv 5259  (class class class)co 5925   0cc0 7896   1c1 7897    - cmin 8214   NNcn 9007   2c2 9058   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100  ..^cfzo 10234  ♯chash 10884   abscabs 11179    gcd cgcd 12145   phicphi 12402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-gcd 12146  df-phi 12404
This theorem is referenced by:  phimullem  12418  eulerth  12426  hashgcdeq  12433
  Copyright terms: Public domain W3C validator