ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmcllem Unicode version

Theorem lcmcllem 11999
Description: Lemma for lcmn0cl 12000 and dvdslcm 12001. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmcllem  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  e.  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } )
Distinct variable groups:    n, M    n, N

Proof of Theorem lcmcllem
StepHypRef Expression
1 lcmn0val 11998 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  = inf ( { n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) } ,  RR ,  <  ) )
2 1zzd 9218 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  1  e.  ZZ )
3 nnuz 9501 . . . 4  |-  NN  =  ( ZZ>= `  1 )
4 rabeq 2718 . . . 4  |-  ( NN  =  ( ZZ>= `  1
)  ->  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) }  =  { n  e.  ( ZZ>=
`  1 )  |  ( M  ||  n  /\  N  ||  n ) } )
53, 4ax-mp 5 . . 3  |-  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) }  =  { n  e.  ( ZZ>=
`  1 )  |  ( M  ||  n  /\  N  ||  n ) }
6 simpll 519 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  e.  ZZ )
7 simplr 520 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  e.  ZZ )
86, 7zmulcld 9319 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  x.  N )  e.  ZZ )
96zcnd 9314 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  e.  CC )
107zcnd 9314 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  e.  CC )
11 ioran 742 . . . . . . . . . . . 12  |-  ( -.  ( M  =  0  \/  N  =  0 )  <->  ( -.  M  =  0  /\  -.  N  =  0 ) )
1211biimpi 119 . . . . . . . . . . 11  |-  ( -.  ( M  =  0  \/  N  =  0 )  ->  ( -.  M  =  0  /\  -.  N  =  0
) )
1312adantl 275 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( -.  M  =  0  /\  -.  N  =  0 ) )
1413simpld 111 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  M  = 
0 )
1514neqned 2343 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  =/=  0
)
16 0zd 9203 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  0  e.  ZZ )
17 zapne 9265 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  ->  ( M #  0  <->  M  =/=  0 ) )
186, 16, 17syl2anc 409 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M #  0  <-> 
M  =/=  0 ) )
1915, 18mpbird 166 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M #  0 )
2013simprd 113 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  N  = 
0 )
2120neqned 2343 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  =/=  0
)
22 zapne 9265 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N #  0  <->  N  =/=  0 ) )
237, 16, 22syl2anc 409 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( N #  0  <-> 
N  =/=  0 ) )
2421, 23mpbird 166 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N #  0 )
259, 10, 19, 24mulap0d 8555 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  x.  N ) #  0 )
26 zapne 9265 . . . . . . 7  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( M  x.  N ) #  0  <->  ( M  x.  N )  =/=  0
) )
278, 16, 26syl2anc 409 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M  x.  N ) #  0  <-> 
( M  x.  N
)  =/=  0 ) )
2825, 27mpbid 146 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  x.  N )  =/=  0
)
29 nnabscl 11042 . . . . 5  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 )  ->  ( abs `  ( M  x.  N )
)  e.  NN )
308, 28, 29syl2anc 409 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  ( M  x.  N )
)  e.  NN )
31 dvdsmul1 11753 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( M  x.  N ) )
32 zmulcl 9244 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )
33 dvdsabsb 11750 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  ->  ( M  ||  ( M  x.  N
)  <->  M  ||  ( abs `  ( M  x.  N
) ) ) )
3432, 33syldan 280 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M  x.  N )  <->  M 
||  ( abs `  ( M  x.  N )
) ) )
3531, 34mpbid 146 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( abs `  ( M  x.  N
) ) )
36 dvdsmul2 11754 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( M  x.  N ) )
37 dvdsabsb 11750 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  ->  ( N  ||  ( M  x.  N
)  <->  N  ||  ( abs `  ( M  x.  N
) ) ) )
3832, 37sylan2 284 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( N  ||  ( M  x.  N
)  <->  N  ||  ( abs `  ( M  x.  N
) ) ) )
3938anabss7 573 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  ||  ( M  x.  N )  <->  N 
||  ( abs `  ( M  x.  N )
) ) )
4036, 39mpbid 146 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( abs `  ( M  x.  N
) ) )
4135, 40jca 304 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( abs `  ( M  x.  N ) )  /\  N  ||  ( abs `  ( M  x.  N )
) ) )
4241adantr 274 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  ||  ( abs `  ( M  x.  N ) )  /\  N  ||  ( abs `  ( M  x.  N ) ) ) )
43 breq2 3986 . . . . . 6  |-  ( n  =  ( abs `  ( M  x.  N )
)  ->  ( M  ||  n  <->  M  ||  ( abs `  ( M  x.  N
) ) ) )
44 breq2 3986 . . . . . 6  |-  ( n  =  ( abs `  ( M  x.  N )
)  ->  ( N  ||  n  <->  N  ||  ( abs `  ( M  x.  N
) ) ) )
4543, 44anbi12d 465 . . . . 5  |-  ( n  =  ( abs `  ( M  x.  N )
)  ->  ( ( M  ||  n  /\  N  ||  n )  <->  ( M  ||  ( abs `  ( M  x.  N )
)  /\  N  ||  ( abs `  ( M  x.  N ) ) ) ) )
4645elrab 2882 . . . 4  |-  ( ( abs `  ( M  x.  N ) )  e.  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) }  <->  ( ( abs `  ( M  x.  N ) )  e.  NN  /\  ( M 
||  ( abs `  ( M  x.  N )
)  /\  N  ||  ( abs `  ( M  x.  N ) ) ) ) )
4730, 42, 46sylanbrc 414 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  ( M  x.  N )
)  e.  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } )
48 simplll 523 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  ->  M  e.  ZZ )
49 elfzelz 9960 . . . . . 6  |-  ( n  e.  ( 1 ... ( abs `  ( M  x.  N )
) )  ->  n  e.  ZZ )
5049adantl 275 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  ->  n  e.  ZZ )
51 zdvdsdc 11752 . . . . 5  |-  ( ( M  e.  ZZ  /\  n  e.  ZZ )  -> DECID  M 
||  n )
5248, 50, 51syl2anc 409 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  -> DECID  M  ||  n )
53 simpllr 524 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  ->  N  e.  ZZ )
54 zdvdsdc 11752 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  -> DECID  N 
||  n )
5553, 50, 54syl2anc 409 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  -> DECID  N  ||  n )
56 dcan2 924 . . . 4  |-  (DECID  M  ||  n  ->  (DECID  N  ||  n  -> DECID  ( M  ||  n  /\  N  ||  n ) ) )
5752, 55, 56sylc 62 . . 3  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  -> DECID  ( M  ||  n  /\  N  ||  n ) )
582, 5, 47, 57infssuzcldc 11884 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> inf ( { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } ,  RR ,  <  )  e. 
{ n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } )
591, 58eqeltrd 2243 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  e.  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    = wceq 1343    e. wcel 2136    =/= wne 2336   {crab 2448   class class class wbr 3982   ` cfv 5188  (class class class)co 5842  infcinf 6948   RRcr 7752   0cc0 7753   1c1 7754    x. cmul 7758    < clt 7933   # cap 8479   NNcn 8857   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944   abscabs 10939    || cdvds 11727   lcm clcm 11992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-lcm 11993
This theorem is referenced by:  lcmn0cl  12000  dvdslcm  12001
  Copyright terms: Public domain W3C validator