ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmval Unicode version

Theorem lcmval 12231
Description: Value of the lcm operator.  ( M lcm  N
) is the least common multiple of  M and  N. If either  M or  N is  0, the result is defined conventionally as  0. Contrast with df-gcd 12121 and gcdval 12126. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmval  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  =  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } ,  RR ,  <  ) ) )
Distinct variable groups:    n, M    n, N

Proof of Theorem lcmval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lcm 12229 . . 3  |- lcm  =  ( x  e.  ZZ , 
y  e.  ZZ  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x 
||  n  /\  y  ||  n ) } ,  RR ,  <  ) ) )
21a1i 9 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> lcm  =  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x  ||  n  /\  y  ||  n
) } ,  RR ,  <  ) ) ) )
3 eqeq1 2203 . . . . . 6  |-  ( x  =  M  ->  (
x  =  0  <->  M  =  0 ) )
43orbi1d 792 . . . . 5  |-  ( x  =  M  ->  (
( x  =  0  \/  y  =  0 )  <->  ( M  =  0  \/  y  =  0 ) ) )
5 breq1 4036 . . . . . . . 8  |-  ( x  =  M  ->  (
x  ||  n  <->  M  ||  n
) )
65anbi1d 465 . . . . . . 7  |-  ( x  =  M  ->  (
( x  ||  n  /\  y  ||  n )  <-> 
( M  ||  n  /\  y  ||  n ) ) )
76rabbidv 2752 . . . . . 6  |-  ( x  =  M  ->  { n  e.  NN  |  ( x 
||  n  /\  y  ||  n ) }  =  { n  e.  NN  |  ( M  ||  n  /\  y  ||  n
) } )
87infeq1d 7078 . . . . 5  |-  ( x  =  M  -> inf ( { n  e.  NN  | 
( x  ||  n  /\  y  ||  n ) } ,  RR ,  <  )  = inf ( { n  e.  NN  | 
( M  ||  n  /\  y  ||  n ) } ,  RR ,  <  ) )
94, 8ifbieq2d 3585 . . . 4  |-  ( x  =  M  ->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x 
||  n  /\  y  ||  n ) } ,  RR ,  <  ) )  =  if ( ( M  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M  ||  n  /\  y  ||  n
) } ,  RR ,  <  ) ) )
10 eqeq1 2203 . . . . . 6  |-  ( y  =  N  ->  (
y  =  0  <->  N  =  0 ) )
1110orbi2d 791 . . . . 5  |-  ( y  =  N  ->  (
( M  =  0  \/  y  =  0 )  <->  ( M  =  0  \/  N  =  0 ) ) )
12 breq1 4036 . . . . . . . 8  |-  ( y  =  N  ->  (
y  ||  n  <->  N  ||  n
) )
1312anbi2d 464 . . . . . . 7  |-  ( y  =  N  ->  (
( M  ||  n  /\  y  ||  n )  <-> 
( M  ||  n  /\  N  ||  n ) ) )
1413rabbidv 2752 . . . . . 6  |-  ( y  =  N  ->  { n  e.  NN  |  ( M 
||  n  /\  y  ||  n ) }  =  { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } )
1514infeq1d 7078 . . . . 5  |-  ( y  =  N  -> inf ( { n  e.  NN  | 
( M  ||  n  /\  y  ||  n ) } ,  RR ,  <  )  = inf ( { n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) } ,  RR ,  <  ) )
1611, 15ifbieq2d 3585 . . . 4  |-  ( y  =  N  ->  if ( ( M  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M 
||  n  /\  y  ||  n ) } ,  RR ,  <  ) )  =  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } ,  RR ,  <  ) ) )
179, 16sylan9eq 2249 . . 3  |-  ( ( x  =  M  /\  y  =  N )  ->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  | 
( x  ||  n  /\  y  ||  n ) } ,  RR ,  <  ) )  =  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } ,  RR ,  <  ) ) )
1817adantl 277 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  =  M  /\  y  =  N ) )  ->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x 
||  n  /\  y  ||  n ) } ,  RR ,  <  ) )  =  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } ,  RR ,  <  ) ) )
19 simpl 109 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
20 simpr 110 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
21 c0ex 8020 . . . 4  |-  0  e.  _V
2221a1i 9 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  -> 
0  e.  _V )
23 1zzd 9353 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  1  e.  ZZ )
24 nnuz 9637 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
2524rabeqi 2756 . . . . 5  |-  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) }  =  { n  e.  ( ZZ>=
`  1 )  |  ( M  ||  n  /\  N  ||  n ) }
26 dvdsmul1 11978 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( M  x.  N ) )
2726adantr 276 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  ||  ( M  x.  N )
)
28 simpll 527 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  e.  ZZ )
29 simplr 528 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  e.  ZZ )
3028, 29zmulcld 9454 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  x.  N )  e.  ZZ )
31 dvdsabsb 11975 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  ->  ( M  ||  ( M  x.  N
)  <->  M  ||  ( abs `  ( M  x.  N
) ) ) )
3228, 30, 31syl2anc 411 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  ||  ( M  x.  N
)  <->  M  ||  ( abs `  ( M  x.  N
) ) ) )
3327, 32mpbid 147 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  ||  ( abs `  ( M  x.  N ) ) )
34 dvdsmul2 11979 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( M  x.  N ) )
3534adantr 276 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  ||  ( M  x.  N )
)
36 dvdsabsb 11975 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  ->  ( N  ||  ( M  x.  N
)  <->  N  ||  ( abs `  ( M  x.  N
) ) ) )
3729, 30, 36syl2anc 411 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( N  ||  ( M  x.  N
)  <->  N  ||  ( abs `  ( M  x.  N
) ) ) )
3835, 37mpbid 147 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  ||  ( abs `  ( M  x.  N ) ) )
3928zcnd 9449 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  e.  CC )
4029zcnd 9449 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  e.  CC )
4139, 40absmuld 11359 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  ( M  x.  N )
)  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
42 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  ( M  =  0  \/  N  =  0 ) )
43 ioran 753 . . . . . . . . . . . . 13  |-  ( -.  ( M  =  0  \/  N  =  0 )  <->  ( -.  M  =  0  /\  -.  N  =  0 ) )
4442, 43sylib 122 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( -.  M  =  0  /\  -.  N  =  0 ) )
4544simpld 112 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  M  = 
0 )
4645neneqad 2446 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  =/=  0
)
47 nnabscl 11265 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
4828, 46, 47syl2anc 411 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  M
)  e.  NN )
4944simprd 114 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  N  = 
0 )
5049neneqad 2446 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  =/=  0
)
51 nnabscl 11265 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
5229, 50, 51syl2anc 411 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  N
)  e.  NN )
5348, 52nnmulcld 9039 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( abs `  M )  x.  ( abs `  N ) )  e.  NN )
5441, 53eqeltrd 2273 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  ( M  x.  N )
)  e.  NN )
55 breq2 4037 . . . . . . . . 9  |-  ( n  =  ( abs `  ( M  x.  N )
)  ->  ( M  ||  n  <->  M  ||  ( abs `  ( M  x.  N
) ) ) )
56 breq2 4037 . . . . . . . . 9  |-  ( n  =  ( abs `  ( M  x.  N )
)  ->  ( N  ||  n  <->  N  ||  ( abs `  ( M  x.  N
) ) ) )
5755, 56anbi12d 473 . . . . . . . 8  |-  ( n  =  ( abs `  ( M  x.  N )
)  ->  ( ( M  ||  n  /\  N  ||  n )  <->  ( M  ||  ( abs `  ( M  x.  N )
)  /\  N  ||  ( abs `  ( M  x.  N ) ) ) ) )
5857elrab3 2921 . . . . . . 7  |-  ( ( abs `  ( M  x.  N ) )  e.  NN  ->  (
( abs `  ( M  x.  N )
)  e.  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) }  <->  ( M  ||  ( abs `  ( M  x.  N )
)  /\  N  ||  ( abs `  ( M  x.  N ) ) ) ) )
5954, 58syl 14 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( abs `  ( M  x.  N
) )  e.  {
n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) }  <->  ( M  ||  ( abs `  ( M  x.  N ) )  /\  N  ||  ( abs `  ( M  x.  N ) ) ) ) )
6033, 38, 59mpbir2and 946 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  ( M  x.  N )
)  e.  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } )
61 elfzelz 10100 . . . . . . 7  |-  ( n  e.  ( 1 ... ( abs `  ( M  x.  N )
) )  ->  n  e.  ZZ )
62 zdvdsdc 11977 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  n  e.  ZZ )  -> DECID  M 
||  n )
6328, 61, 62syl2an 289 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  -> DECID  M  ||  n )
64 zdvdsdc 11977 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  -> DECID  N 
||  n )
6529, 61, 64syl2an 289 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  -> DECID  N  ||  n )
6663, 65dcand 934 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  -> DECID  ( M  ||  n  /\  N  ||  n ) )
6723, 25, 60, 66infssuzcldc 10325 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> inf ( { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } ,  RR ,  <  )  e. 
{ n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } )
6867elexd 2776 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> inf ( { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } ,  RR ,  <  )  e. 
_V )
69 lcmmndc 12230 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
7022, 68, 69ifcldadc 3590 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) } ,  RR ,  <  ) )  e.  _V )
712, 18, 19, 20, 70ovmpod 6050 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  =  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } ,  RR ,  <  ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167    =/= wne 2367   {crab 2479   _Vcvv 2763   ifcif 3561   class class class wbr 4033   ` cfv 5258  (class class class)co 5922    e. cmpo 5924  infcinf 7049   RRcr 7878   0cc0 7879   1c1 7880    x. cmul 7884    < clt 8061   NNcn 8990   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083   abscabs 11162    || cdvds 11952   lcm clcm 12228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-lcm 12229
This theorem is referenced by:  lcmcom  12232  lcm0val  12233  lcmn0val  12234  lcmass  12253
  Copyright terms: Public domain W3C validator