ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmval Unicode version

Theorem lcmval 12580
Description: Value of the lcm operator.  ( M lcm  N
) is the least common multiple of  M and  N. If either  M or  N is  0, the result is defined conventionally as  0. Contrast with df-gcd 12470 and gcdval 12475. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmval  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  =  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } ,  RR ,  <  ) ) )
Distinct variable groups:    n, M    n, N

Proof of Theorem lcmval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lcm 12578 . . 3  |- lcm  =  ( x  e.  ZZ , 
y  e.  ZZ  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x 
||  n  /\  y  ||  n ) } ,  RR ,  <  ) ) )
21a1i 9 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> lcm  =  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x  ||  n  /\  y  ||  n
) } ,  RR ,  <  ) ) ) )
3 eqeq1 2236 . . . . . 6  |-  ( x  =  M  ->  (
x  =  0  <->  M  =  0 ) )
43orbi1d 796 . . . . 5  |-  ( x  =  M  ->  (
( x  =  0  \/  y  =  0 )  <->  ( M  =  0  \/  y  =  0 ) ) )
5 breq1 4085 . . . . . . . 8  |-  ( x  =  M  ->  (
x  ||  n  <->  M  ||  n
) )
65anbi1d 465 . . . . . . 7  |-  ( x  =  M  ->  (
( x  ||  n  /\  y  ||  n )  <-> 
( M  ||  n  /\  y  ||  n ) ) )
76rabbidv 2788 . . . . . 6  |-  ( x  =  M  ->  { n  e.  NN  |  ( x 
||  n  /\  y  ||  n ) }  =  { n  e.  NN  |  ( M  ||  n  /\  y  ||  n
) } )
87infeq1d 7175 . . . . 5  |-  ( x  =  M  -> inf ( { n  e.  NN  | 
( x  ||  n  /\  y  ||  n ) } ,  RR ,  <  )  = inf ( { n  e.  NN  | 
( M  ||  n  /\  y  ||  n ) } ,  RR ,  <  ) )
94, 8ifbieq2d 3627 . . . 4  |-  ( x  =  M  ->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x 
||  n  /\  y  ||  n ) } ,  RR ,  <  ) )  =  if ( ( M  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M  ||  n  /\  y  ||  n
) } ,  RR ,  <  ) ) )
10 eqeq1 2236 . . . . . 6  |-  ( y  =  N  ->  (
y  =  0  <->  N  =  0 ) )
1110orbi2d 795 . . . . 5  |-  ( y  =  N  ->  (
( M  =  0  \/  y  =  0 )  <->  ( M  =  0  \/  N  =  0 ) ) )
12 breq1 4085 . . . . . . . 8  |-  ( y  =  N  ->  (
y  ||  n  <->  N  ||  n
) )
1312anbi2d 464 . . . . . . 7  |-  ( y  =  N  ->  (
( M  ||  n  /\  y  ||  n )  <-> 
( M  ||  n  /\  N  ||  n ) ) )
1413rabbidv 2788 . . . . . 6  |-  ( y  =  N  ->  { n  e.  NN  |  ( M 
||  n  /\  y  ||  n ) }  =  { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } )
1514infeq1d 7175 . . . . 5  |-  ( y  =  N  -> inf ( { n  e.  NN  | 
( M  ||  n  /\  y  ||  n ) } ,  RR ,  <  )  = inf ( { n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) } ,  RR ,  <  ) )
1611, 15ifbieq2d 3627 . . . 4  |-  ( y  =  N  ->  if ( ( M  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M 
||  n  /\  y  ||  n ) } ,  RR ,  <  ) )  =  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } ,  RR ,  <  ) ) )
179, 16sylan9eq 2282 . . 3  |-  ( ( x  =  M  /\  y  =  N )  ->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  | 
( x  ||  n  /\  y  ||  n ) } ,  RR ,  <  ) )  =  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } ,  RR ,  <  ) ) )
1817adantl 277 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  =  M  /\  y  =  N ) )  ->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x 
||  n  /\  y  ||  n ) } ,  RR ,  <  ) )  =  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } ,  RR ,  <  ) ) )
19 simpl 109 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
20 simpr 110 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
21 c0ex 8136 . . . 4  |-  0  e.  _V
2221a1i 9 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  -> 
0  e.  _V )
23 1zzd 9469 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  1  e.  ZZ )
24 nnuz 9754 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
2524rabeqi 2792 . . . . 5  |-  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) }  =  { n  e.  ( ZZ>=
`  1 )  |  ( M  ||  n  /\  N  ||  n ) }
26 dvdsmul1 12319 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( M  x.  N ) )
2726adantr 276 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  ||  ( M  x.  N )
)
28 simpll 527 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  e.  ZZ )
29 simplr 528 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  e.  ZZ )
3028, 29zmulcld 9571 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  x.  N )  e.  ZZ )
31 dvdsabsb 12316 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  ->  ( M  ||  ( M  x.  N
)  <->  M  ||  ( abs `  ( M  x.  N
) ) ) )
3228, 30, 31syl2anc 411 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  ||  ( M  x.  N
)  <->  M  ||  ( abs `  ( M  x.  N
) ) ) )
3327, 32mpbid 147 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  ||  ( abs `  ( M  x.  N ) ) )
34 dvdsmul2 12320 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( M  x.  N ) )
3534adantr 276 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  ||  ( M  x.  N )
)
36 dvdsabsb 12316 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  ->  ( N  ||  ( M  x.  N
)  <->  N  ||  ( abs `  ( M  x.  N
) ) ) )
3729, 30, 36syl2anc 411 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( N  ||  ( M  x.  N
)  <->  N  ||  ( abs `  ( M  x.  N
) ) ) )
3835, 37mpbid 147 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  ||  ( abs `  ( M  x.  N ) ) )
3928zcnd 9566 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  e.  CC )
4029zcnd 9566 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  e.  CC )
4139, 40absmuld 11700 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  ( M  x.  N )
)  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
42 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  ( M  =  0  \/  N  =  0 ) )
43 ioran 757 . . . . . . . . . . . . 13  |-  ( -.  ( M  =  0  \/  N  =  0 )  <->  ( -.  M  =  0  /\  -.  N  =  0 ) )
4442, 43sylib 122 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( -.  M  =  0  /\  -.  N  =  0 ) )
4544simpld 112 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  M  = 
0 )
4645neneqad 2479 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  =/=  0
)
47 nnabscl 11606 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
4828, 46, 47syl2anc 411 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  M
)  e.  NN )
4944simprd 114 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  N  = 
0 )
5049neneqad 2479 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  =/=  0
)
51 nnabscl 11606 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
5229, 50, 51syl2anc 411 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  N
)  e.  NN )
5348, 52nnmulcld 9155 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( abs `  M )  x.  ( abs `  N ) )  e.  NN )
5441, 53eqeltrd 2306 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  ( M  x.  N )
)  e.  NN )
55 breq2 4086 . . . . . . . . 9  |-  ( n  =  ( abs `  ( M  x.  N )
)  ->  ( M  ||  n  <->  M  ||  ( abs `  ( M  x.  N
) ) ) )
56 breq2 4086 . . . . . . . . 9  |-  ( n  =  ( abs `  ( M  x.  N )
)  ->  ( N  ||  n  <->  N  ||  ( abs `  ( M  x.  N
) ) ) )
5755, 56anbi12d 473 . . . . . . . 8  |-  ( n  =  ( abs `  ( M  x.  N )
)  ->  ( ( M  ||  n  /\  N  ||  n )  <->  ( M  ||  ( abs `  ( M  x.  N )
)  /\  N  ||  ( abs `  ( M  x.  N ) ) ) ) )
5857elrab3 2960 . . . . . . 7  |-  ( ( abs `  ( M  x.  N ) )  e.  NN  ->  (
( abs `  ( M  x.  N )
)  e.  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) }  <->  ( M  ||  ( abs `  ( M  x.  N )
)  /\  N  ||  ( abs `  ( M  x.  N ) ) ) ) )
5954, 58syl 14 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( abs `  ( M  x.  N
) )  e.  {
n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) }  <->  ( M  ||  ( abs `  ( M  x.  N ) )  /\  N  ||  ( abs `  ( M  x.  N ) ) ) ) )
6033, 38, 59mpbir2and 950 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  ( M  x.  N )
)  e.  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } )
61 elfzelz 10217 . . . . . . 7  |-  ( n  e.  ( 1 ... ( abs `  ( M  x.  N )
) )  ->  n  e.  ZZ )
62 zdvdsdc 12318 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  n  e.  ZZ )  -> DECID  M 
||  n )
6328, 61, 62syl2an 289 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  -> DECID  M  ||  n )
64 zdvdsdc 12318 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  -> DECID  N 
||  n )
6529, 61, 64syl2an 289 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  -> DECID  N  ||  n )
6663, 65dcand 938 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  -> DECID  ( M  ||  n  /\  N  ||  n ) )
6723, 25, 60, 66infssuzcldc 10450 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> inf ( { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } ,  RR ,  <  )  e. 
{ n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } )
6867elexd 2813 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> inf ( { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } ,  RR ,  <  )  e. 
_V )
69 lcmmndc 12579 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
7022, 68, 69ifcldadc 3632 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) } ,  RR ,  <  ) )  e.  _V )
712, 18, 19, 20, 70ovmpod 6131 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  =  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } ,  RR ,  <  ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200    =/= wne 2400   {crab 2512   _Vcvv 2799   ifcif 3602   class class class wbr 4082   ` cfv 5317  (class class class)co 6000    e. cmpo 6002  infcinf 7146   RRcr 7994   0cc0 7995   1c1 7996    x. cmul 8000    < clt 8177   NNcn 9106   ZZcz 9442   ZZ>=cuz 9718   ...cfz 10200   abscabs 11503    || cdvds 12293   lcm clcm 12577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294  df-lcm 12578
This theorem is referenced by:  lcmcom  12581  lcm0val  12582  lcmn0val  12583  lcmass  12602
  Copyright terms: Public domain W3C validator