ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmval Unicode version

Theorem lcmval 12460
Description: Value of the lcm operator.  ( M lcm  N
) is the least common multiple of  M and  N. If either  M or  N is  0, the result is defined conventionally as  0. Contrast with df-gcd 12350 and gcdval 12355. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmval  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  =  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } ,  RR ,  <  ) ) )
Distinct variable groups:    n, M    n, N

Proof of Theorem lcmval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lcm 12458 . . 3  |- lcm  =  ( x  e.  ZZ , 
y  e.  ZZ  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x 
||  n  /\  y  ||  n ) } ,  RR ,  <  ) ) )
21a1i 9 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> lcm  =  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x  ||  n  /\  y  ||  n
) } ,  RR ,  <  ) ) ) )
3 eqeq1 2213 . . . . . 6  |-  ( x  =  M  ->  (
x  =  0  <->  M  =  0 ) )
43orbi1d 793 . . . . 5  |-  ( x  =  M  ->  (
( x  =  0  \/  y  =  0 )  <->  ( M  =  0  \/  y  =  0 ) ) )
5 breq1 4054 . . . . . . . 8  |-  ( x  =  M  ->  (
x  ||  n  <->  M  ||  n
) )
65anbi1d 465 . . . . . . 7  |-  ( x  =  M  ->  (
( x  ||  n  /\  y  ||  n )  <-> 
( M  ||  n  /\  y  ||  n ) ) )
76rabbidv 2762 . . . . . 6  |-  ( x  =  M  ->  { n  e.  NN  |  ( x 
||  n  /\  y  ||  n ) }  =  { n  e.  NN  |  ( M  ||  n  /\  y  ||  n
) } )
87infeq1d 7129 . . . . 5  |-  ( x  =  M  -> inf ( { n  e.  NN  | 
( x  ||  n  /\  y  ||  n ) } ,  RR ,  <  )  = inf ( { n  e.  NN  | 
( M  ||  n  /\  y  ||  n ) } ,  RR ,  <  ) )
94, 8ifbieq2d 3600 . . . 4  |-  ( x  =  M  ->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x 
||  n  /\  y  ||  n ) } ,  RR ,  <  ) )  =  if ( ( M  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M  ||  n  /\  y  ||  n
) } ,  RR ,  <  ) ) )
10 eqeq1 2213 . . . . . 6  |-  ( y  =  N  ->  (
y  =  0  <->  N  =  0 ) )
1110orbi2d 792 . . . . 5  |-  ( y  =  N  ->  (
( M  =  0  \/  y  =  0 )  <->  ( M  =  0  \/  N  =  0 ) ) )
12 breq1 4054 . . . . . . . 8  |-  ( y  =  N  ->  (
y  ||  n  <->  N  ||  n
) )
1312anbi2d 464 . . . . . . 7  |-  ( y  =  N  ->  (
( M  ||  n  /\  y  ||  n )  <-> 
( M  ||  n  /\  N  ||  n ) ) )
1413rabbidv 2762 . . . . . 6  |-  ( y  =  N  ->  { n  e.  NN  |  ( M 
||  n  /\  y  ||  n ) }  =  { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } )
1514infeq1d 7129 . . . . 5  |-  ( y  =  N  -> inf ( { n  e.  NN  | 
( M  ||  n  /\  y  ||  n ) } ,  RR ,  <  )  = inf ( { n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) } ,  RR ,  <  ) )
1611, 15ifbieq2d 3600 . . . 4  |-  ( y  =  N  ->  if ( ( M  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M 
||  n  /\  y  ||  n ) } ,  RR ,  <  ) )  =  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } ,  RR ,  <  ) ) )
179, 16sylan9eq 2259 . . 3  |-  ( ( x  =  M  /\  y  =  N )  ->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  | 
( x  ||  n  /\  y  ||  n ) } ,  RR ,  <  ) )  =  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } ,  RR ,  <  ) ) )
1817adantl 277 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  =  M  /\  y  =  N ) )  ->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x 
||  n  /\  y  ||  n ) } ,  RR ,  <  ) )  =  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } ,  RR ,  <  ) ) )
19 simpl 109 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
20 simpr 110 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
21 c0ex 8086 . . . 4  |-  0  e.  _V
2221a1i 9 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  -> 
0  e.  _V )
23 1zzd 9419 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  1  e.  ZZ )
24 nnuz 9704 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
2524rabeqi 2766 . . . . 5  |-  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) }  =  { n  e.  ( ZZ>=
`  1 )  |  ( M  ||  n  /\  N  ||  n ) }
26 dvdsmul1 12199 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( M  x.  N ) )
2726adantr 276 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  ||  ( M  x.  N )
)
28 simpll 527 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  e.  ZZ )
29 simplr 528 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  e.  ZZ )
3028, 29zmulcld 9521 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  x.  N )  e.  ZZ )
31 dvdsabsb 12196 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  ->  ( M  ||  ( M  x.  N
)  <->  M  ||  ( abs `  ( M  x.  N
) ) ) )
3228, 30, 31syl2anc 411 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  ||  ( M  x.  N
)  <->  M  ||  ( abs `  ( M  x.  N
) ) ) )
3327, 32mpbid 147 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  ||  ( abs `  ( M  x.  N ) ) )
34 dvdsmul2 12200 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( M  x.  N ) )
3534adantr 276 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  ||  ( M  x.  N )
)
36 dvdsabsb 12196 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  ->  ( N  ||  ( M  x.  N
)  <->  N  ||  ( abs `  ( M  x.  N
) ) ) )
3729, 30, 36syl2anc 411 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( N  ||  ( M  x.  N
)  <->  N  ||  ( abs `  ( M  x.  N
) ) ) )
3835, 37mpbid 147 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  ||  ( abs `  ( M  x.  N ) ) )
3928zcnd 9516 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  e.  CC )
4029zcnd 9516 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  e.  CC )
4139, 40absmuld 11580 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  ( M  x.  N )
)  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
42 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  ( M  =  0  \/  N  =  0 ) )
43 ioran 754 . . . . . . . . . . . . 13  |-  ( -.  ( M  =  0  \/  N  =  0 )  <->  ( -.  M  =  0  /\  -.  N  =  0 ) )
4442, 43sylib 122 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( -.  M  =  0  /\  -.  N  =  0 ) )
4544simpld 112 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  M  = 
0 )
4645neneqad 2456 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  =/=  0
)
47 nnabscl 11486 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
4828, 46, 47syl2anc 411 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  M
)  e.  NN )
4944simprd 114 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  N  = 
0 )
5049neneqad 2456 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  =/=  0
)
51 nnabscl 11486 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
5229, 50, 51syl2anc 411 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  N
)  e.  NN )
5348, 52nnmulcld 9105 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( abs `  M )  x.  ( abs `  N ) )  e.  NN )
5441, 53eqeltrd 2283 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  ( M  x.  N )
)  e.  NN )
55 breq2 4055 . . . . . . . . 9  |-  ( n  =  ( abs `  ( M  x.  N )
)  ->  ( M  ||  n  <->  M  ||  ( abs `  ( M  x.  N
) ) ) )
56 breq2 4055 . . . . . . . . 9  |-  ( n  =  ( abs `  ( M  x.  N )
)  ->  ( N  ||  n  <->  N  ||  ( abs `  ( M  x.  N
) ) ) )
5755, 56anbi12d 473 . . . . . . . 8  |-  ( n  =  ( abs `  ( M  x.  N )
)  ->  ( ( M  ||  n  /\  N  ||  n )  <->  ( M  ||  ( abs `  ( M  x.  N )
)  /\  N  ||  ( abs `  ( M  x.  N ) ) ) ) )
5857elrab3 2934 . . . . . . 7  |-  ( ( abs `  ( M  x.  N ) )  e.  NN  ->  (
( abs `  ( M  x.  N )
)  e.  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) }  <->  ( M  ||  ( abs `  ( M  x.  N )
)  /\  N  ||  ( abs `  ( M  x.  N ) ) ) ) )
5954, 58syl 14 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( abs `  ( M  x.  N
) )  e.  {
n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) }  <->  ( M  ||  ( abs `  ( M  x.  N ) )  /\  N  ||  ( abs `  ( M  x.  N ) ) ) ) )
6033, 38, 59mpbir2and 947 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  ( M  x.  N )
)  e.  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } )
61 elfzelz 10167 . . . . . . 7  |-  ( n  e.  ( 1 ... ( abs `  ( M  x.  N )
) )  ->  n  e.  ZZ )
62 zdvdsdc 12198 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  n  e.  ZZ )  -> DECID  M 
||  n )
6328, 61, 62syl2an 289 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  -> DECID  M  ||  n )
64 zdvdsdc 12198 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  -> DECID  N 
||  n )
6529, 61, 64syl2an 289 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  -> DECID  N  ||  n )
6663, 65dcand 935 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  -> DECID  ( M  ||  n  /\  N  ||  n ) )
6723, 25, 60, 66infssuzcldc 10400 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> inf ( { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } ,  RR ,  <  )  e. 
{ n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } )
6867elexd 2787 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> inf ( { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } ,  RR ,  <  )  e. 
_V )
69 lcmmndc 12459 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
7022, 68, 69ifcldadc 3605 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) } ,  RR ,  <  ) )  e.  _V )
712, 18, 19, 20, 70ovmpod 6086 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  =  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } ,  RR ,  <  ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2177    =/= wne 2377   {crab 2489   _Vcvv 2773   ifcif 3575   class class class wbr 4051   ` cfv 5280  (class class class)co 5957    e. cmpo 5959  infcinf 7100   RRcr 7944   0cc0 7945   1c1 7946    x. cmul 7950    < clt 8127   NNcn 9056   ZZcz 9392   ZZ>=cuz 9668   ...cfz 10150   abscabs 11383    || cdvds 12173   lcm clcm 12457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-sup 7101  df-inf 7102  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-fl 10435  df-mod 10490  df-seqfrec 10615  df-exp 10706  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-dvds 12174  df-lcm 12458
This theorem is referenced by:  lcmcom  12461  lcm0val  12462  lcmn0val  12463  lcmass  12482
  Copyright terms: Public domain W3C validator