| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lcmval | Unicode version | ||
| Description: Value of the lcm
operator. |
| Ref | Expression |
|---|---|
| lcmval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lcm 12458 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | eqeq1 2213 |
. . . . . 6
| |
| 4 | 3 | orbi1d 793 |
. . . . 5
|
| 5 | breq1 4054 |
. . . . . . . 8
| |
| 6 | 5 | anbi1d 465 |
. . . . . . 7
|
| 7 | 6 | rabbidv 2762 |
. . . . . 6
|
| 8 | 7 | infeq1d 7129 |
. . . . 5
|
| 9 | 4, 8 | ifbieq2d 3600 |
. . . 4
|
| 10 | eqeq1 2213 |
. . . . . 6
| |
| 11 | 10 | orbi2d 792 |
. . . . 5
|
| 12 | breq1 4054 |
. . . . . . . 8
| |
| 13 | 12 | anbi2d 464 |
. . . . . . 7
|
| 14 | 13 | rabbidv 2762 |
. . . . . 6
|
| 15 | 14 | infeq1d 7129 |
. . . . 5
|
| 16 | 11, 15 | ifbieq2d 3600 |
. . . 4
|
| 17 | 9, 16 | sylan9eq 2259 |
. . 3
|
| 18 | 17 | adantl 277 |
. 2
|
| 19 | simpl 109 |
. 2
| |
| 20 | simpr 110 |
. 2
| |
| 21 | c0ex 8086 |
. . . 4
| |
| 22 | 21 | a1i 9 |
. . 3
|
| 23 | 1zzd 9419 |
. . . . 5
| |
| 24 | nnuz 9704 |
. . . . . 6
| |
| 25 | 24 | rabeqi 2766 |
. . . . 5
|
| 26 | dvdsmul1 12199 |
. . . . . . . 8
| |
| 27 | 26 | adantr 276 |
. . . . . . 7
|
| 28 | simpll 527 |
. . . . . . . 8
| |
| 29 | simplr 528 |
. . . . . . . . 9
| |
| 30 | 28, 29 | zmulcld 9521 |
. . . . . . . 8
|
| 31 | dvdsabsb 12196 |
. . . . . . . 8
| |
| 32 | 28, 30, 31 | syl2anc 411 |
. . . . . . 7
|
| 33 | 27, 32 | mpbid 147 |
. . . . . 6
|
| 34 | dvdsmul2 12200 |
. . . . . . . 8
| |
| 35 | 34 | adantr 276 |
. . . . . . 7
|
| 36 | dvdsabsb 12196 |
. . . . . . . 8
| |
| 37 | 29, 30, 36 | syl2anc 411 |
. . . . . . 7
|
| 38 | 35, 37 | mpbid 147 |
. . . . . 6
|
| 39 | 28 | zcnd 9516 |
. . . . . . . . 9
|
| 40 | 29 | zcnd 9516 |
. . . . . . . . 9
|
| 41 | 39, 40 | absmuld 11580 |
. . . . . . . 8
|
| 42 | simpr 110 |
. . . . . . . . . . . . 13
| |
| 43 | ioran 754 |
. . . . . . . . . . . . 13
| |
| 44 | 42, 43 | sylib 122 |
. . . . . . . . . . . 12
|
| 45 | 44 | simpld 112 |
. . . . . . . . . . 11
|
| 46 | 45 | neneqad 2456 |
. . . . . . . . . 10
|
| 47 | nnabscl 11486 |
. . . . . . . . . 10
| |
| 48 | 28, 46, 47 | syl2anc 411 |
. . . . . . . . 9
|
| 49 | 44 | simprd 114 |
. . . . . . . . . . 11
|
| 50 | 49 | neneqad 2456 |
. . . . . . . . . 10
|
| 51 | nnabscl 11486 |
. . . . . . . . . 10
| |
| 52 | 29, 50, 51 | syl2anc 411 |
. . . . . . . . 9
|
| 53 | 48, 52 | nnmulcld 9105 |
. . . . . . . 8
|
| 54 | 41, 53 | eqeltrd 2283 |
. . . . . . 7
|
| 55 | breq2 4055 |
. . . . . . . . 9
| |
| 56 | breq2 4055 |
. . . . . . . . 9
| |
| 57 | 55, 56 | anbi12d 473 |
. . . . . . . 8
|
| 58 | 57 | elrab3 2934 |
. . . . . . 7
|
| 59 | 54, 58 | syl 14 |
. . . . . 6
|
| 60 | 33, 38, 59 | mpbir2and 947 |
. . . . 5
|
| 61 | elfzelz 10167 |
. . . . . . 7
| |
| 62 | zdvdsdc 12198 |
. . . . . . 7
| |
| 63 | 28, 61, 62 | syl2an 289 |
. . . . . 6
|
| 64 | zdvdsdc 12198 |
. . . . . . 7
| |
| 65 | 29, 61, 64 | syl2an 289 |
. . . . . 6
|
| 66 | 63, 65 | dcand 935 |
. . . . 5
|
| 67 | 23, 25, 60, 66 | infssuzcldc 10400 |
. . . 4
|
| 68 | 67 | elexd 2787 |
. . 3
|
| 69 | lcmmndc 12459 |
. . 3
| |
| 70 | 22, 68, 69 | ifcldadc 3605 |
. 2
|
| 71 | 2, 18, 19, 20, 70 | ovmpod 6086 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-isom 5289 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-sup 7101 df-inf 7102 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-fz 10151 df-fzo 10285 df-fl 10435 df-mod 10490 df-seqfrec 10615 df-exp 10706 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-dvds 12174 df-lcm 12458 |
| This theorem is referenced by: lcmcom 12461 lcm0val 12462 lcmn0val 12463 lcmass 12482 |
| Copyright terms: Public domain | W3C validator |