ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmledvds Unicode version

Theorem lcmledvds 12578
Description: A positive integer which both operands of the lcm operator divide bounds it. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmledvds  |-  ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> 
( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  <_  K )
)

Proof of Theorem lcmledvds
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 lcmn0val 12574 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  = inf ( { n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) } ,  RR ,  <  ) )
213adantl1 1177 . . . 4  |-  ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> 
( M lcm  N )  = inf ( { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } ,  RR ,  <  ) )
32adantr 276 . . 3  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  -> 
( M lcm  N )  = inf ( { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } ,  RR ,  <  ) )
4 1zzd 9461 . . . 4  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  -> 
1  e.  ZZ )
5 nnuz 9746 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
65rabeqi 2792 . . . 4  |-  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) }  =  { n  e.  ( ZZ>=
`  1 )  |  ( M  ||  n  /\  N  ||  n ) }
7 breq2 4086 . . . . . 6  |-  ( n  =  K  ->  ( M  ||  n  <->  M  ||  K
) )
8 breq2 4086 . . . . . 6  |-  ( n  =  K  ->  ( N  ||  n  <->  N  ||  K
) )
97, 8anbi12d 473 . . . . 5  |-  ( n  =  K  ->  (
( M  ||  n  /\  N  ||  n )  <-> 
( M  ||  K  /\  N  ||  K ) ) )
10 simpll1 1060 . . . . 5  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  ->  K  e.  NN )
11 simpr 110 . . . . 5  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  -> 
( M  ||  K  /\  N  ||  K ) )
129, 10, 11elrabd 2961 . . . 4  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  ->  K  e.  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } )
13 simpll2 1061 . . . . . . 7  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... K
) )  ->  M  e.  ZZ )
14 elfzelz 10209 . . . . . . . 8  |-  ( n  e.  ( 1 ... K )  ->  n  e.  ZZ )
1514adantl 277 . . . . . . 7  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... K
) )  ->  n  e.  ZZ )
16 zdvdsdc 12309 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  n  e.  ZZ )  -> DECID  M 
||  n )
1713, 15, 16syl2anc 411 . . . . . 6  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... K
) )  -> DECID  M  ||  n )
18 simpll3 1062 . . . . . . 7  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... K
) )  ->  N  e.  ZZ )
19 zdvdsdc 12309 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  -> DECID  N 
||  n )
2018, 15, 19syl2anc 411 . . . . . 6  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... K
) )  -> DECID  N  ||  n )
2117, 20dcand 938 . . . . 5  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... K
) )  -> DECID  ( M  ||  n  /\  N  ||  n ) )
2221adantlr 477 . . . 4  |-  ( ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  /\  n  e.  ( 1 ... K ) )  -> DECID 
( M  ||  n  /\  N  ||  n ) )
234, 6, 12, 22infssuzledc 10441 . . 3  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  -> inf ( { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } ,  RR ,  <  )  <_  K
)
243, 23eqbrtrd 4104 . 2  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  -> 
( M lcm  N )  <_  K )
2524ex 115 1  |-  ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> 
( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  <_  K )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395    e. wcel 2200   {crab 2512   class class class wbr 4082   ` cfv 5314  (class class class)co 5994  infcinf 7138   RRcr 7986   0cc0 7987   1c1 7988    < clt 8169    <_ cle 8170   NNcn 9098   ZZcz 9434   ZZ>=cuz 9710   ...cfz 10192    || cdvds 12284   lcm clcm 12568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-sup 7139  df-inf 7140  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-dvds 12285  df-lcm 12569
This theorem is referenced by:  lcmneg  12582
  Copyright terms: Public domain W3C validator