ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmledvds Unicode version

Theorem lcmledvds 11927
Description: A positive integer which both operands of the lcm operator divide bounds it. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmledvds  |-  ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> 
( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  <_  K )
)

Proof of Theorem lcmledvds
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 lcmn0val 11923 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  = inf ( { n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) } ,  RR ,  <  ) )
213adantl1 1138 . . . 4  |-  ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> 
( M lcm  N )  = inf ( { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } ,  RR ,  <  ) )
32adantr 274 . . 3  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  -> 
( M lcm  N )  = inf ( { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } ,  RR ,  <  ) )
4 1zzd 9177 . . . 4  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  -> 
1  e.  ZZ )
5 nnuz 9457 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
6 rabeq 2704 . . . . 5  |-  ( NN  =  ( ZZ>= `  1
)  ->  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) }  =  { n  e.  ( ZZ>=
`  1 )  |  ( M  ||  n  /\  N  ||  n ) } )
75, 6ax-mp 5 . . . 4  |-  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) }  =  { n  e.  ( ZZ>=
`  1 )  |  ( M  ||  n  /\  N  ||  n ) }
8 simpll1 1021 . . . . 5  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  ->  K  e.  NN )
9 simpr 109 . . . . 5  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  -> 
( M  ||  K  /\  N  ||  K ) )
10 breq2 3969 . . . . . . 7  |-  ( n  =  K  ->  ( M  ||  n  <->  M  ||  K
) )
11 breq2 3969 . . . . . . 7  |-  ( n  =  K  ->  ( N  ||  n  <->  N  ||  K
) )
1210, 11anbi12d 465 . . . . . 6  |-  ( n  =  K  ->  (
( M  ||  n  /\  N  ||  n )  <-> 
( M  ||  K  /\  N  ||  K ) ) )
1312elrab 2868 . . . . 5  |-  ( K  e.  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) }  <->  ( K  e.  NN  /\  ( M 
||  K  /\  N  ||  K ) ) )
148, 9, 13sylanbrc 414 . . . 4  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  ->  K  e.  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } )
15 simpll2 1022 . . . . . . 7  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... K
) )  ->  M  e.  ZZ )
16 elfzelz 9910 . . . . . . . 8  |-  ( n  e.  ( 1 ... K )  ->  n  e.  ZZ )
1716adantl 275 . . . . . . 7  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... K
) )  ->  n  e.  ZZ )
18 zdvdsdc 11689 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  n  e.  ZZ )  -> DECID  M 
||  n )
1915, 17, 18syl2anc 409 . . . . . 6  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... K
) )  -> DECID  M  ||  n )
20 simpll3 1023 . . . . . . 7  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... K
) )  ->  N  e.  ZZ )
21 zdvdsdc 11689 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  -> DECID  N 
||  n )
2220, 17, 21syl2anc 409 . . . . . 6  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... K
) )  -> DECID  N  ||  n )
23 dcan 919 . . . . . 6  |-  (DECID  M  ||  n  ->  (DECID  N  ||  n  -> DECID  ( M  ||  n  /\  N  ||  n ) ) )
2419, 22, 23sylc 62 . . . . 5  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... K
) )  -> DECID  ( M  ||  n  /\  N  ||  n ) )
2524adantlr 469 . . . 4  |-  ( ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  /\  n  e.  ( 1 ... K ) )  -> DECID 
( M  ||  n  /\  N  ||  n ) )
264, 7, 14, 25infssuzledc 11818 . . 3  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  -> inf ( { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } ,  RR ,  <  )  <_  K
)
273, 26eqbrtrd 3986 . 2  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  -> 
( M lcm  N )  <_  K )
2827ex 114 1  |-  ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> 
( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  <_  K )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 820    /\ w3a 963    = wceq 1335    e. wcel 2128   {crab 2439   class class class wbr 3965   ` cfv 5167  (class class class)co 5818  infcinf 6919   RRcr 7714   0cc0 7715   1c1 7716    < clt 7895    <_ cle 7896   NNcn 8816   ZZcz 9150   ZZ>=cuz 9422   ...cfz 9894    || cdvds 11665   lcm clcm 11917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-isom 5176  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-frec 6332  df-sup 6920  df-inf 6921  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-q 9511  df-rp 9543  df-fz 9895  df-fzo 10024  df-fl 10151  df-mod 10204  df-seqfrec 10327  df-exp 10401  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881  df-dvds 11666  df-lcm 11918
This theorem is referenced by:  lcmneg  11931
  Copyright terms: Public domain W3C validator