ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmledvds Unicode version

Theorem lcmledvds 12238
Description: A positive integer which both operands of the lcm operator divide bounds it. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmledvds  |-  ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> 
( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  <_  K )
)

Proof of Theorem lcmledvds
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 lcmn0val 12234 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  = inf ( { n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) } ,  RR ,  <  ) )
213adantl1 1155 . . . 4  |-  ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> 
( M lcm  N )  = inf ( { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } ,  RR ,  <  ) )
32adantr 276 . . 3  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  -> 
( M lcm  N )  = inf ( { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } ,  RR ,  <  ) )
4 1zzd 9353 . . . 4  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  -> 
1  e.  ZZ )
5 nnuz 9637 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
65rabeqi 2756 . . . 4  |-  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) }  =  { n  e.  ( ZZ>=
`  1 )  |  ( M  ||  n  /\  N  ||  n ) }
7 breq2 4037 . . . . . 6  |-  ( n  =  K  ->  ( M  ||  n  <->  M  ||  K
) )
8 breq2 4037 . . . . . 6  |-  ( n  =  K  ->  ( N  ||  n  <->  N  ||  K
) )
97, 8anbi12d 473 . . . . 5  |-  ( n  =  K  ->  (
( M  ||  n  /\  N  ||  n )  <-> 
( M  ||  K  /\  N  ||  K ) ) )
10 simpll1 1038 . . . . 5  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  ->  K  e.  NN )
11 simpr 110 . . . . 5  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  -> 
( M  ||  K  /\  N  ||  K ) )
129, 10, 11elrabd 2922 . . . 4  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  ->  K  e.  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } )
13 simpll2 1039 . . . . . . 7  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... K
) )  ->  M  e.  ZZ )
14 elfzelz 10100 . . . . . . . 8  |-  ( n  e.  ( 1 ... K )  ->  n  e.  ZZ )
1514adantl 277 . . . . . . 7  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... K
) )  ->  n  e.  ZZ )
16 zdvdsdc 11977 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  n  e.  ZZ )  -> DECID  M 
||  n )
1713, 15, 16syl2anc 411 . . . . . 6  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... K
) )  -> DECID  M  ||  n )
18 simpll3 1040 . . . . . . 7  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... K
) )  ->  N  e.  ZZ )
19 zdvdsdc 11977 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  -> DECID  N 
||  n )
2018, 15, 19syl2anc 411 . . . . . 6  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... K
) )  -> DECID  N  ||  n )
2117, 20dcand 934 . . . . 5  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... K
) )  -> DECID  ( M  ||  n  /\  N  ||  n ) )
2221adantlr 477 . . . 4  |-  ( ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  /\  n  e.  ( 1 ... K ) )  -> DECID 
( M  ||  n  /\  N  ||  n ) )
234, 6, 12, 22infssuzledc 10324 . . 3  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  -> inf ( { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } ,  RR ,  <  )  <_  K
)
243, 23eqbrtrd 4055 . 2  |-  ( ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  ( M  ||  K  /\  N  ||  K ) )  -> 
( M lcm  N )  <_  K )
2524ex 115 1  |-  ( ( ( K  e.  NN  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> 
( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  <_  K )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167   {crab 2479   class class class wbr 4033   ` cfv 5258  (class class class)co 5922  infcinf 7049   RRcr 7878   0cc0 7879   1c1 7880    < clt 8061    <_ cle 8062   NNcn 8990   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083    || cdvds 11952   lcm clcm 12228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-lcm 12229
This theorem is referenced by:  lcmneg  12242
  Copyright terms: Public domain W3C validator