ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odzcllem Unicode version

Theorem odzcllem 12133
Description: - Lemma for odzcl 12134, showing existence of a recurrent point for the exponential. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.)
Assertion
Ref Expression
odzcllem  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( ( odZ `  N ) `  A
)  e.  NN  /\  N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )

Proof of Theorem odzcllem
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 odzval 12132 . . 3  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  ) )
2 1zzd 9200 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  1  e.  ZZ )
3 nnuz 9480 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
43rabeqi 2705 . . . 4  |-  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  =  {
n  e.  ( ZZ>= ` 
1 )  |  N  ||  ( ( A ^
n )  -  1 ) }
5 oveq2 5835 . . . . . . 7  |-  ( n  =  ( phi `  N )  ->  ( A ^ n )  =  ( A ^ ( phi `  N ) ) )
65oveq1d 5842 . . . . . 6  |-  ( n  =  ( phi `  N )  ->  (
( A ^ n
)  -  1 )  =  ( ( A ^ ( phi `  N ) )  - 
1 ) )
76breq2d 3979 . . . . 5  |-  ( n  =  ( phi `  N )  ->  ( N  ||  ( ( A ^ n )  - 
1 )  <->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
8 phicl 12106 . . . . . 6  |-  ( N  e.  NN  ->  ( phi `  N )  e.  NN )
983ad2ant1 1003 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( phi `  N )  e.  NN )
10 eulerth 12124 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( A ^ ( phi `  N ) )  mod  N )  =  ( 1  mod  N
) )
11 simp1 982 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  N  e.  NN )
12 simp2 983 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  A  e.  ZZ )
139nnnn0d 9149 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( phi `  N )  e. 
NN0 )
14 zexpcl 10444 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( phi `  N )  e.  NN0 )  -> 
( A ^ ( phi `  N ) )  e.  ZZ )
1512, 13, 14syl2anc 409 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( A ^ ( phi `  N ) )  e.  ZZ )
16 1z 9199 . . . . . . . 8  |-  1  e.  ZZ
17 moddvds 11707 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A ^ ( phi `  N ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^
( phi `  N
) )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
1816, 17mp3an3 1308 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A ^ ( phi `  N ) )  e.  ZZ )  ->  (
( ( A ^
( phi `  N
) )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
1911, 15, 18syl2anc 409 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( ( A ^
( phi `  N
) )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
2010, 19mpbid 146 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  N  ||  ( ( A ^
( phi `  N
) )  -  1 ) )
217, 9, 20elrabd 2870 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( phi `  N )  e. 
{ n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } )
22 elfznn 9963 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( phi `  N
) )  ->  n  e.  NN )
2322adantl 275 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  n  e.  ( 1 ... ( phi `  N ) ) )  ->  n  e.  NN )
2423nnnn0d 9149 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  n  e.  ( 1 ... ( phi `  N ) ) )  ->  n  e.  NN0 )
25 zexpcl 10444 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  n  e.  NN0 )  -> 
( A ^ n
)  e.  ZZ )
2612, 24, 25syl2an2r 585 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  n  e.  ( 1 ... ( phi `  N ) ) )  ->  ( A ^
n )  e.  ZZ )
27 peano2zm 9211 . . . . . 6  |-  ( ( A ^ n )  e.  ZZ  ->  (
( A ^ n
)  -  1 )  e.  ZZ )
2826, 27syl 14 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  n  e.  ( 1 ... ( phi `  N ) ) )  ->  ( ( A ^ n )  - 
1 )  e.  ZZ )
29 dvdsdc 11706 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( A ^
n )  -  1 )  e.  ZZ )  -> DECID 
N  ||  ( ( A ^ n )  - 
1 ) )
3011, 28, 29syl2an2r 585 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  n  e.  ( 1 ... ( phi `  N ) ) )  -> DECID 
N  ||  ( ( A ^ n )  - 
1 ) )
312, 4, 21, 30infssuzcldc 11851 . . 3  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  -> inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  )  e. 
{ n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } )
321, 31eqeltrd 2234 . 2  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  e.  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } )
33 oveq2 5835 . . . . 5  |-  ( n  =  ( ( odZ `  N ) `  A )  ->  ( A ^ n )  =  ( A ^ (
( odZ `  N ) `  A
) ) )
3433oveq1d 5842 . . . 4  |-  ( n  =  ( ( odZ `  N ) `  A )  ->  (
( A ^ n
)  -  1 )  =  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) )
3534breq2d 3979 . . 3  |-  ( n  =  ( ( odZ `  N ) `  A )  ->  ( N  ||  ( ( A ^ n )  - 
1 )  <->  N  ||  (
( A ^ (
( odZ `  N ) `  A
) )  -  1 ) ) )
3635elrab 2868 . 2  |-  ( ( ( odZ `  N ) `  A
)  e.  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  <->  ( (
( odZ `  N ) `  A
)  e.  NN  /\  N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )
3732, 36sylib 121 1  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( ( odZ `  N ) `  A
)  e.  NN  /\  N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 820    /\ w3a 963    = wceq 1335    e. wcel 2128   {crab 2439   class class class wbr 3967   ` cfv 5173  (class class class)co 5827  infcinf 6930   RRcr 7734   1c1 7736    < clt 7915    - cmin 8051   NNcn 8839   NN0cn0 9096   ZZcz 9173   ZZ>=cuz 9445   ...cfz 9919    mod cmo 10231   ^cexp 10428    || cdvds 11695    gcd cgcd 11842   odZcodz 12099   phicphi 12100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-mulrcl 7834  ax-addcom 7835  ax-mulcom 7836  ax-addass 7837  ax-mulass 7838  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-1rid 7842  ax-0id 7843  ax-rnegex 7844  ax-precex 7845  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851  ax-pre-mulgt0 7852  ax-pre-mulext 7853  ax-arch 7854  ax-caucvg 7855
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-po 4259  df-iso 4260  df-iord 4329  df-on 4331  df-ilim 4332  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-isom 5182  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-recs 6255  df-irdg 6320  df-frec 6341  df-1o 6366  df-oadd 6370  df-er 6483  df-en 6689  df-dom 6690  df-fin 6691  df-sup 6931  df-inf 6932  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-reap 8455  df-ap 8462  df-div 8551  df-inn 8840  df-2 8898  df-3 8899  df-4 8900  df-n0 9097  df-z 9174  df-uz 9446  df-q 9536  df-rp 9568  df-fz 9920  df-fzo 10052  df-fl 10179  df-mod 10232  df-seqfrec 10355  df-exp 10429  df-ihash 10662  df-cj 10754  df-re 10755  df-im 10756  df-rsqrt 10910  df-abs 10911  df-clim 11188  df-proddc 11460  df-dvds 11696  df-gcd 11843  df-odz 12101  df-phi 12102
This theorem is referenced by:  odzcl  12134  odzid  12135
  Copyright terms: Public domain W3C validator