ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odzcllem Unicode version

Theorem odzcllem 12273
Description: - Lemma for odzcl 12274, showing existence of a recurrent point for the exponential. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.)
Assertion
Ref Expression
odzcllem  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( ( odZ `  N ) `  A
)  e.  NN  /\  N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )

Proof of Theorem odzcllem
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 odzval 12272 . . 3  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  ) )
2 1zzd 9309 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  1  e.  ZZ )
3 nnuz 9592 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
43rabeqi 2745 . . . 4  |-  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  =  {
n  e.  ( ZZ>= ` 
1 )  |  N  ||  ( ( A ^
n )  -  1 ) }
5 oveq2 5903 . . . . . . 7  |-  ( n  =  ( phi `  N )  ->  ( A ^ n )  =  ( A ^ ( phi `  N ) ) )
65oveq1d 5910 . . . . . 6  |-  ( n  =  ( phi `  N )  ->  (
( A ^ n
)  -  1 )  =  ( ( A ^ ( phi `  N ) )  - 
1 ) )
76breq2d 4030 . . . . 5  |-  ( n  =  ( phi `  N )  ->  ( N  ||  ( ( A ^ n )  - 
1 )  <->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
8 phicl 12246 . . . . . 6  |-  ( N  e.  NN  ->  ( phi `  N )  e.  NN )
983ad2ant1 1020 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( phi `  N )  e.  NN )
10 eulerth 12264 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( A ^ ( phi `  N ) )  mod  N )  =  ( 1  mod  N
) )
11 simp1 999 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  N  e.  NN )
12 simp2 1000 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  A  e.  ZZ )
139nnnn0d 9258 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( phi `  N )  e. 
NN0 )
14 zexpcl 10565 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( phi `  N )  e.  NN0 )  -> 
( A ^ ( phi `  N ) )  e.  ZZ )
1512, 13, 14syl2anc 411 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( A ^ ( phi `  N ) )  e.  ZZ )
16 1z 9308 . . . . . . . 8  |-  1  e.  ZZ
17 moddvds 11837 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A ^ ( phi `  N ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^
( phi `  N
) )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
1816, 17mp3an3 1337 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A ^ ( phi `  N ) )  e.  ZZ )  ->  (
( ( A ^
( phi `  N
) )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
1911, 15, 18syl2anc 411 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( ( A ^
( phi `  N
) )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
2010, 19mpbid 147 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  N  ||  ( ( A ^
( phi `  N
) )  -  1 ) )
217, 9, 20elrabd 2910 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( phi `  N )  e. 
{ n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } )
22 elfznn 10083 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( phi `  N
) )  ->  n  e.  NN )
2322adantl 277 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  n  e.  ( 1 ... ( phi `  N ) ) )  ->  n  e.  NN )
2423nnnn0d 9258 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  n  e.  ( 1 ... ( phi `  N ) ) )  ->  n  e.  NN0 )
25 zexpcl 10565 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  n  e.  NN0 )  -> 
( A ^ n
)  e.  ZZ )
2612, 24, 25syl2an2r 595 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  n  e.  ( 1 ... ( phi `  N ) ) )  ->  ( A ^
n )  e.  ZZ )
27 peano2zm 9320 . . . . . 6  |-  ( ( A ^ n )  e.  ZZ  ->  (
( A ^ n
)  -  1 )  e.  ZZ )
2826, 27syl 14 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  n  e.  ( 1 ... ( phi `  N ) ) )  ->  ( ( A ^ n )  - 
1 )  e.  ZZ )
29 dvdsdc 11836 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( A ^
n )  -  1 )  e.  ZZ )  -> DECID 
N  ||  ( ( A ^ n )  - 
1 ) )
3011, 28, 29syl2an2r 595 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  n  e.  ( 1 ... ( phi `  N ) ) )  -> DECID 
N  ||  ( ( A ^ n )  - 
1 ) )
312, 4, 21, 30infssuzcldc 11983 . . 3  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  -> inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  )  e. 
{ n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } )
321, 31eqeltrd 2266 . 2  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  e.  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } )
33 oveq2 5903 . . . . 5  |-  ( n  =  ( ( odZ `  N ) `  A )  ->  ( A ^ n )  =  ( A ^ (
( odZ `  N ) `  A
) ) )
3433oveq1d 5910 . . . 4  |-  ( n  =  ( ( odZ `  N ) `  A )  ->  (
( A ^ n
)  -  1 )  =  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) )
3534breq2d 4030 . . 3  |-  ( n  =  ( ( odZ `  N ) `  A )  ->  ( N  ||  ( ( A ^ n )  - 
1 )  <->  N  ||  (
( A ^ (
( odZ `  N ) `  A
) )  -  1 ) ) )
3635elrab 2908 . 2  |-  ( ( ( odZ `  N ) `  A
)  e.  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  <->  ( (
( odZ `  N ) `  A
)  e.  NN  /\  N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )
3732, 36sylib 122 1  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( ( odZ `  N ) `  A
)  e.  NN  /\  N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2160   {crab 2472   class class class wbr 4018   ` cfv 5235  (class class class)co 5895  infcinf 7011   RRcr 7839   1c1 7841    < clt 8021    - cmin 8157   NNcn 8948   NN0cn0 9205   ZZcz 9282   ZZ>=cuz 9557   ...cfz 10037    mod cmo 10352   ^cexp 10549    || cdvds 11825    gcd cgcd 11974   odZcodz 12239   phicphi 12240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957  ax-pre-mulext 7958  ax-arch 7959  ax-caucvg 7960
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-irdg 6394  df-frec 6415  df-1o 6440  df-oadd 6444  df-er 6558  df-en 6766  df-dom 6767  df-fin 6768  df-sup 7012  df-inf 7013  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-reap 8561  df-ap 8568  df-div 8659  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-n0 9206  df-z 9283  df-uz 9558  df-q 9649  df-rp 9683  df-fz 10038  df-fzo 10172  df-fl 10300  df-mod 10353  df-seqfrec 10476  df-exp 10550  df-ihash 10787  df-cj 10882  df-re 10883  df-im 10884  df-rsqrt 11038  df-abs 11039  df-clim 11318  df-proddc 11590  df-dvds 11826  df-gcd 11975  df-odz 12241  df-phi 12242
This theorem is referenced by:  odzcl  12274  odzid  12275
  Copyright terms: Public domain W3C validator