ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odzcllem Unicode version

Theorem odzcllem 12196
Description: - Lemma for odzcl 12197, showing existence of a recurrent point for the exponential. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.)
Assertion
Ref Expression
odzcllem  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( ( odZ `  N ) `  A
)  e.  NN  /\  N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )

Proof of Theorem odzcllem
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 odzval 12195 . . 3  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  ) )
2 1zzd 9239 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  1  e.  ZZ )
3 nnuz 9522 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
43rabeqi 2723 . . . 4  |-  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  =  {
n  e.  ( ZZ>= ` 
1 )  |  N  ||  ( ( A ^
n )  -  1 ) }
5 oveq2 5861 . . . . . . 7  |-  ( n  =  ( phi `  N )  ->  ( A ^ n )  =  ( A ^ ( phi `  N ) ) )
65oveq1d 5868 . . . . . 6  |-  ( n  =  ( phi `  N )  ->  (
( A ^ n
)  -  1 )  =  ( ( A ^ ( phi `  N ) )  - 
1 ) )
76breq2d 4001 . . . . 5  |-  ( n  =  ( phi `  N )  ->  ( N  ||  ( ( A ^ n )  - 
1 )  <->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
8 phicl 12169 . . . . . 6  |-  ( N  e.  NN  ->  ( phi `  N )  e.  NN )
983ad2ant1 1013 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( phi `  N )  e.  NN )
10 eulerth 12187 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( A ^ ( phi `  N ) )  mod  N )  =  ( 1  mod  N
) )
11 simp1 992 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  N  e.  NN )
12 simp2 993 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  A  e.  ZZ )
139nnnn0d 9188 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( phi `  N )  e. 
NN0 )
14 zexpcl 10491 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( phi `  N )  e.  NN0 )  -> 
( A ^ ( phi `  N ) )  e.  ZZ )
1512, 13, 14syl2anc 409 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( A ^ ( phi `  N ) )  e.  ZZ )
16 1z 9238 . . . . . . . 8  |-  1  e.  ZZ
17 moddvds 11761 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A ^ ( phi `  N ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^
( phi `  N
) )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
1816, 17mp3an3 1321 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A ^ ( phi `  N ) )  e.  ZZ )  ->  (
( ( A ^
( phi `  N
) )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
1911, 15, 18syl2anc 409 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( ( A ^
( phi `  N
) )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
2010, 19mpbid 146 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  N  ||  ( ( A ^
( phi `  N
) )  -  1 ) )
217, 9, 20elrabd 2888 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( phi `  N )  e. 
{ n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } )
22 elfznn 10010 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( phi `  N
) )  ->  n  e.  NN )
2322adantl 275 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  n  e.  ( 1 ... ( phi `  N ) ) )  ->  n  e.  NN )
2423nnnn0d 9188 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  n  e.  ( 1 ... ( phi `  N ) ) )  ->  n  e.  NN0 )
25 zexpcl 10491 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  n  e.  NN0 )  -> 
( A ^ n
)  e.  ZZ )
2612, 24, 25syl2an2r 590 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  n  e.  ( 1 ... ( phi `  N ) ) )  ->  ( A ^
n )  e.  ZZ )
27 peano2zm 9250 . . . . . 6  |-  ( ( A ^ n )  e.  ZZ  ->  (
( A ^ n
)  -  1 )  e.  ZZ )
2826, 27syl 14 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  n  e.  ( 1 ... ( phi `  N ) ) )  ->  ( ( A ^ n )  - 
1 )  e.  ZZ )
29 dvdsdc 11760 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( A ^
n )  -  1 )  e.  ZZ )  -> DECID 
N  ||  ( ( A ^ n )  - 
1 ) )
3011, 28, 29syl2an2r 590 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  n  e.  ( 1 ... ( phi `  N ) ) )  -> DECID 
N  ||  ( ( A ^ n )  - 
1 ) )
312, 4, 21, 30infssuzcldc 11906 . . 3  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  -> inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  )  e. 
{ n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } )
321, 31eqeltrd 2247 . 2  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  e.  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } )
33 oveq2 5861 . . . . 5  |-  ( n  =  ( ( odZ `  N ) `  A )  ->  ( A ^ n )  =  ( A ^ (
( odZ `  N ) `  A
) ) )
3433oveq1d 5868 . . . 4  |-  ( n  =  ( ( odZ `  N ) `  A )  ->  (
( A ^ n
)  -  1 )  =  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) )
3534breq2d 4001 . . 3  |-  ( n  =  ( ( odZ `  N ) `  A )  ->  ( N  ||  ( ( A ^ n )  - 
1 )  <->  N  ||  (
( A ^ (
( odZ `  N ) `  A
) )  -  1 ) ) )
3635elrab 2886 . 2  |-  ( ( ( odZ `  N ) `  A
)  e.  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  <->  ( (
( odZ `  N ) `  A
)  e.  NN  /\  N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )
3732, 36sylib 121 1  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( ( odZ `  N ) `  A
)  e.  NN  /\  N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 829    /\ w3a 973    = wceq 1348    e. wcel 2141   {crab 2452   class class class wbr 3989   ` cfv 5198  (class class class)co 5853  infcinf 6960   RRcr 7773   1c1 7775    < clt 7954    - cmin 8090   NNcn 8878   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965    mod cmo 10278   ^cexp 10475    || cdvds 11749    gcd cgcd 11897   odZcodz 12162   phicphi 12163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514  df-dvds 11750  df-gcd 11898  df-odz 12164  df-phi 12165
This theorem is referenced by:  odzcl  12197  odzid  12198
  Copyright terms: Public domain W3C validator