ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabxmdc GIF version

Theorem rabxmdc 3496
Description: Law of excluded middle given decidability, in terms of restricted class abstractions. (Contributed by Jim Kingdon, 2-Aug-2018.)
Assertion
Ref Expression
rabxmdc (∀𝑥DECID 𝜑𝐴 = ({𝑥𝐴𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑}))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabxmdc
StepHypRef Expression
1 exmiddc 838 . . . . . 6 (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑))
21a1d 22 . . . . 5 (DECID 𝜑 → (𝑥𝐴 → (𝜑 ∨ ¬ 𝜑)))
32alimi 1479 . . . 4 (∀𝑥DECID 𝜑 → ∀𝑥(𝑥𝐴 → (𝜑 ∨ ¬ 𝜑)))
4 df-ral 2490 . . . 4 (∀𝑥𝐴 (𝜑 ∨ ¬ 𝜑) ↔ ∀𝑥(𝑥𝐴 → (𝜑 ∨ ¬ 𝜑)))
53, 4sylibr 134 . . 3 (∀𝑥DECID 𝜑 → ∀𝑥𝐴 (𝜑 ∨ ¬ 𝜑))
6 rabid2 2684 . . 3 (𝐴 = {𝑥𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} ↔ ∀𝑥𝐴 (𝜑 ∨ ¬ 𝜑))
75, 6sylibr 134 . 2 (∀𝑥DECID 𝜑𝐴 = {𝑥𝐴 ∣ (𝜑 ∨ ¬ 𝜑)})
8 unrab 3448 . 2 ({𝑥𝐴𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑}) = {𝑥𝐴 ∣ (𝜑 ∨ ¬ 𝜑)}
97, 8eqtr4di 2257 1 (∀𝑥DECID 𝜑𝐴 = ({𝑥𝐴𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 710  DECID wdc 836  wal 1371   = wceq 1373  wcel 2177  wral 2485  {crab 2489  cun 3168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rab 2494  df-v 2775  df-un 3174
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator