| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabxmdc | GIF version | ||
| Description: Law of excluded middle given decidability, in terms of restricted class abstractions. (Contributed by Jim Kingdon, 2-Aug-2018.) |
| Ref | Expression |
|---|---|
| rabxmdc | ⊢ (∀𝑥DECID 𝜑 → 𝐴 = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmiddc 838 | . . . . . 6 ⊢ (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑)) | |
| 2 | 1 | a1d 22 | . . . . 5 ⊢ (DECID 𝜑 → (𝑥 ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑))) |
| 3 | 2 | alimi 1479 | . . . 4 ⊢ (∀𝑥DECID 𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑))) |
| 4 | df-ral 2490 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ ¬ 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑))) | |
| 5 | 3, 4 | sylibr 134 | . . 3 ⊢ (∀𝑥DECID 𝜑 → ∀𝑥 ∈ 𝐴 (𝜑 ∨ ¬ 𝜑)) |
| 6 | rabid2 2684 | . . 3 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∨ ¬ 𝜑)) | |
| 7 | 5, 6 | sylibr 134 | . 2 ⊢ (∀𝑥DECID 𝜑 → 𝐴 = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)}) |
| 8 | unrab 3448 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} | |
| 9 | 7, 8 | eqtr4di 2257 | 1 ⊢ (∀𝑥DECID 𝜑 → 𝐴 = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑})) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 710 DECID wdc 836 ∀wal 1371 = wceq 1373 ∈ wcel 2177 ∀wral 2485 {crab 2489 ∪ cun 3168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rab 2494 df-v 2775 df-un 3174 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |