| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabxmdc | GIF version | ||
| Description: Law of excluded middle given decidability, in terms of restricted class abstractions. (Contributed by Jim Kingdon, 2-Aug-2018.) |
| Ref | Expression |
|---|---|
| rabxmdc | ⊢ (∀𝑥DECID 𝜑 → 𝐴 = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmiddc 837 | . . . . . 6 ⊢ (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑)) | |
| 2 | 1 | a1d 22 | . . . . 5 ⊢ (DECID 𝜑 → (𝑥 ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑))) |
| 3 | 2 | alimi 1469 | . . . 4 ⊢ (∀𝑥DECID 𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑))) |
| 4 | df-ral 2480 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ ¬ 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑))) | |
| 5 | 3, 4 | sylibr 134 | . . 3 ⊢ (∀𝑥DECID 𝜑 → ∀𝑥 ∈ 𝐴 (𝜑 ∨ ¬ 𝜑)) |
| 6 | rabid2 2674 | . . 3 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∨ ¬ 𝜑)) | |
| 7 | 5, 6 | sylibr 134 | . 2 ⊢ (∀𝑥DECID 𝜑 → 𝐴 = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)}) |
| 8 | unrab 3434 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} | |
| 9 | 7, 8 | eqtr4di 2247 | 1 ⊢ (∀𝑥DECID 𝜑 → 𝐴 = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑})) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 ∀wal 1362 = wceq 1364 ∈ wcel 2167 ∀wral 2475 {crab 2479 ∪ cun 3155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 df-v 2765 df-un 3161 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |