![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabxmdc | GIF version |
Description: Law of excluded middle given decidability, in terms of restricted class abstractions. (Contributed by Jim Kingdon, 2-Aug-2018.) |
Ref | Expression |
---|---|
rabxmdc | ⊢ (∀𝑥DECID 𝜑 → 𝐴 = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmiddc 788 | . . . . . 6 ⊢ (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑)) | |
2 | 1 | a1d 22 | . . . . 5 ⊢ (DECID 𝜑 → (𝑥 ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑))) |
3 | 2 | alimi 1399 | . . . 4 ⊢ (∀𝑥DECID 𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑))) |
4 | df-ral 2380 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ ¬ 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑))) | |
5 | 3, 4 | sylibr 133 | . . 3 ⊢ (∀𝑥DECID 𝜑 → ∀𝑥 ∈ 𝐴 (𝜑 ∨ ¬ 𝜑)) |
6 | rabid2 2565 | . . 3 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∨ ¬ 𝜑)) | |
7 | 5, 6 | sylibr 133 | . 2 ⊢ (∀𝑥DECID 𝜑 → 𝐴 = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)}) |
8 | unrab 3294 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} | |
9 | 7, 8 | syl6eqr 2150 | 1 ⊢ (∀𝑥DECID 𝜑 → 𝐴 = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑})) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 670 DECID wdc 786 ∀wal 1297 = wceq 1299 ∈ wcel 1448 ∀wral 2375 {crab 2379 ∪ cun 3019 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-dc 787 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rab 2384 df-v 2643 df-un 3025 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |