ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabxmdc GIF version

Theorem rabxmdc 3456
Description: Law of excluded middle given decidability, in terms of restricted class abstractions. (Contributed by Jim Kingdon, 2-Aug-2018.)
Assertion
Ref Expression
rabxmdc (∀𝑥DECID 𝜑𝐴 = ({𝑥𝐴𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑}))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabxmdc
StepHypRef Expression
1 exmiddc 836 . . . . . 6 (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑))
21a1d 22 . . . . 5 (DECID 𝜑 → (𝑥𝐴 → (𝜑 ∨ ¬ 𝜑)))
32alimi 1455 . . . 4 (∀𝑥DECID 𝜑 → ∀𝑥(𝑥𝐴 → (𝜑 ∨ ¬ 𝜑)))
4 df-ral 2460 . . . 4 (∀𝑥𝐴 (𝜑 ∨ ¬ 𝜑) ↔ ∀𝑥(𝑥𝐴 → (𝜑 ∨ ¬ 𝜑)))
53, 4sylibr 134 . . 3 (∀𝑥DECID 𝜑 → ∀𝑥𝐴 (𝜑 ∨ ¬ 𝜑))
6 rabid2 2654 . . 3 (𝐴 = {𝑥𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} ↔ ∀𝑥𝐴 (𝜑 ∨ ¬ 𝜑))
75, 6sylibr 134 . 2 (∀𝑥DECID 𝜑𝐴 = {𝑥𝐴 ∣ (𝜑 ∨ ¬ 𝜑)})
8 unrab 3408 . 2 ({𝑥𝐴𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑}) = {𝑥𝐴 ∣ (𝜑 ∨ ¬ 𝜑)}
97, 8eqtr4di 2228 1 (∀𝑥DECID 𝜑𝐴 = ({𝑥𝐴𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 708  DECID wdc 834  wal 1351   = wceq 1353  wcel 2148  wral 2455  {crab 2459  cun 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-dc 835  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rab 2464  df-v 2741  df-un 3135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator