| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4di | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr4di.1 |
|
| eqtr4di.2 |
|
| Ref | Expression |
|---|---|
| eqtr4di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4di.1 |
. 2
| |
| 2 | eqtr4di.2 |
. . 3
| |
| 3 | 2 | eqcomi 2200 |
. 2
|
| 4 | 1, 3 | eqtrdi 2245 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: 3eqtr4g 2254 rabxmdc 3483 relop 4817 csbcnvg 4851 dfiun3g 4924 dfiin3g 4925 resima2 4981 relcnvfld 5204 uniabio 5230 fntpg 5315 dffn5im 5609 dfimafn2 5613 fncnvima2 5686 fmptcof 5732 fcoconst 5736 fnasrng 5745 ffnov 6030 fnovim 6035 fnrnov 6073 foov 6074 funimassov 6077 ovelimab 6078 ofc12 6163 caofinvl 6165 dftpos3 6329 tfr0dm 6389 rdgisucinc 6452 oasuc 6531 ecinxp 6678 phplem1 6922 exmidpw 6978 exmidpweq 6979 unfiin 6996 fidcenumlemr 7030 0ct 7182 ctmlemr 7183 exmidaclem 7291 indpi 7426 nqnq0pi 7522 nq0m0r 7540 addnqpr1 7646 recexgt0sr 7857 suplocsrlempr 7891 recidpipr 7940 recidpirq 7942 axrnegex 7963 nntopi 7978 cnref1o 9742 fztp 10170 fseq1m1p1 10187 fz0to4untppr 10216 frecuzrdgrrn 10517 frecuzrdgsuc 10523 frecuzrdgsuctlem 10532 seq3val 10569 seqvalcd 10570 fser0const 10644 mulexpzap 10688 expaddzap 10692 bcp1m1 10874 iswrdiz 10959 cjexp 11075 rexuz3 11172 bdtri 11422 climconst 11472 sumfct 11556 zsumdc 11566 fsum3 11569 sum0 11570 fsumcnv 11619 mertenslem2 11718 zproddc 11761 fprodseq 11765 prod0 11767 prod1dc 11768 prodfct 11769 fprodcnv 11807 ef0lem 11842 efzval 11865 efival 11914 sinbnd 11934 cosbnd 11935 eucalgval 12247 eucalginv 12249 eucalglt 12250 eucalgcvga 12251 eucalg 12252 sqpweven 12368 2sqpwodd 12369 dfphi2 12413 phimullem 12418 prmdiv 12428 odzval 12435 pcval 12490 pczpre 12491 pcrec 12502 4sqlem17 12601 ennnfonelemhdmp1 12651 ennnfonelemkh 12654 ressinbasd 12777 restid2 12950 topnvalg 12953 prdsval 12975 prdsbas3 12989 pwsval 12993 pwsbas 12994 pwselbasb 12995 pwsplusgval 12997 pwsmulrval 12998 imasival 13008 imasplusg 13010 qusval 13025 xpsval 13054 ismgm 13059 plusffvalg 13064 grpidvalg 13075 igsumvalx 13091 issgrp 13105 ismnddef 13120 pws0g 13153 ismhm 13163 isgrp 13208 grpn0 13237 grpinvfvalg 13244 grpsubfvalg 13247 pwsinvg 13314 mulgfvalg 13327 mulgval 13328 mulgnn0p1 13339 issubg 13379 isnsg 13408 eqgfval 13428 quseccl0g 13437 isghm 13449 conjsubg 13483 conjsubgen 13484 iscmn 13499 mgpvalg 13555 isrng 13566 issrg 13597 isring 13632 iscrng 13635 opprvalg 13701 dfrhm2 13786 isnzr 13813 islring 13824 issubrg 13853 rrgval 13894 isdomn 13901 islmod 13923 scaffvalg 13938 lsssetm 13988 lspfval 14020 2idlval 14134 2idlvalg 14135 mulgrhm2 14242 zlmval 14259 znval 14268 znzrhfo 14280 znle2 14284 psrval 14296 istps 14352 cldval 14419 ntrfval 14420 clsfval 14421 neifval 14460 restbasg 14488 tgrest 14489 txval 14575 upxp 14592 uptx 14594 txrest 14596 lmcn2 14600 cnmpt2t 14613 cnmpt2res 14617 imasnopn 14619 psmetxrge0 14652 xmetge0 14685 isxms 14771 isms 14773 bdxmet 14821 qtopbasss 14841 cnblcld 14855 mpomulcn 14886 negfcncf 14926 dvfvalap 15001 eldvap 15002 dvidlemap 15011 dvidrelem 15012 dvidsslem 15013 dvexp2 15032 dvrecap 15033 dveflem 15046 plyconst 15065 plycolemc 15078 sin0pilem1 15101 ptolemy 15144 coskpi 15168 logbrec 15280 mpodvdsmulf1o 15310 fsumdvdsmul 15311 lgslem1 15325 lgsval 15329 lgsval4 15345 lgsfcl3 15346 lgsdilem 15352 lgsdir2lem4 15356 lgsdir2lem5 15357 gausslemma2dlem5 15391 lgsquadlem2 15403 nninfsellemqall 15746 |
| Copyright terms: Public domain | W3C validator |