| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4di | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr4di.1 |
|
| eqtr4di.2 |
|
| Ref | Expression |
|---|---|
| eqtr4di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4di.1 |
. 2
| |
| 2 | eqtr4di.2 |
. . 3
| |
| 3 | 2 | eqcomi 2200 |
. 2
|
| 4 | 1, 3 | eqtrdi 2245 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: 3eqtr4g 2254 rabxmdc 3483 relop 4817 csbcnvg 4851 dfiun3g 4924 dfiin3g 4925 resima2 4981 relcnvfld 5204 uniabio 5230 fntpg 5315 dffn5im 5607 dfimafn2 5611 fncnvima2 5684 fmptcof 5730 fcoconst 5734 fnasrng 5743 ffnov 6028 fnovim 6033 fnrnov 6071 foov 6072 funimassov 6075 ovelimab 6076 ofc12 6160 caofinvl 6162 dftpos3 6322 tfr0dm 6382 rdgisucinc 6445 oasuc 6524 ecinxp 6671 phplem1 6915 exmidpw 6971 exmidpweq 6972 unfiin 6989 fidcenumlemr 7023 0ct 7175 ctmlemr 7176 exmidaclem 7278 indpi 7412 nqnq0pi 7508 nq0m0r 7526 addnqpr1 7632 recexgt0sr 7843 suplocsrlempr 7877 recidpipr 7926 recidpirq 7928 axrnegex 7949 nntopi 7964 cnref1o 9728 fztp 10156 fseq1m1p1 10173 fz0to4untppr 10202 frecuzrdgrrn 10503 frecuzrdgsuc 10509 frecuzrdgsuctlem 10518 seq3val 10555 seqvalcd 10556 fser0const 10630 mulexpzap 10674 expaddzap 10678 bcp1m1 10860 iswrdiz 10945 cjexp 11061 rexuz3 11158 bdtri 11408 climconst 11458 sumfct 11542 zsumdc 11552 fsum3 11555 sum0 11556 fsumcnv 11605 mertenslem2 11704 zproddc 11747 fprodseq 11751 prod0 11753 prod1dc 11754 prodfct 11755 fprodcnv 11793 ef0lem 11828 efzval 11851 efival 11900 sinbnd 11920 cosbnd 11921 eucalgval 12233 eucalginv 12235 eucalglt 12236 eucalgcvga 12237 eucalg 12238 sqpweven 12354 2sqpwodd 12355 dfphi2 12399 phimullem 12404 prmdiv 12414 odzval 12421 pcval 12476 pczpre 12477 pcrec 12488 4sqlem17 12587 ennnfonelemhdmp1 12637 ennnfonelemkh 12640 ressinbasd 12763 restid2 12936 topnvalg 12939 prdsval 12961 imasival 12975 imasplusg 12977 qusval 12992 xpsval 13021 ismgm 13026 plusffvalg 13031 grpidvalg 13042 igsumvalx 13058 issgrp 13072 ismnddef 13085 ismhm 13119 isgrp 13164 grpn0 13193 grpinvfvalg 13200 grpsubfvalg 13203 mulgfvalg 13277 mulgval 13278 mulgnn0p1 13289 issubg 13329 isnsg 13358 eqgfval 13378 quseccl0g 13387 isghm 13399 conjsubg 13433 conjsubgen 13434 iscmn 13449 mgpvalg 13505 isrng 13516 issrg 13547 isring 13582 iscrng 13585 opprvalg 13651 dfrhm2 13736 isnzr 13763 islring 13774 issubrg 13803 rrgval 13844 isdomn 13851 islmod 13873 scaffvalg 13888 lsssetm 13938 lspfval 13970 2idlval 14084 2idlvalg 14085 mulgrhm2 14192 zlmval 14209 znval 14218 znzrhfo 14230 znle2 14234 psrval 14246 istps 14294 cldval 14361 ntrfval 14362 clsfval 14363 neifval 14402 restbasg 14430 tgrest 14431 txval 14517 upxp 14534 uptx 14536 txrest 14538 lmcn2 14542 cnmpt2t 14555 cnmpt2res 14559 imasnopn 14561 psmetxrge0 14594 xmetge0 14627 isxms 14713 isms 14715 bdxmet 14763 qtopbasss 14783 cnblcld 14797 mpomulcn 14828 negfcncf 14868 dvfvalap 14943 eldvap 14944 dvidlemap 14953 dvidrelem 14954 dvidsslem 14955 dvexp2 14974 dvrecap 14975 dveflem 14988 plyconst 15007 plycolemc 15020 sin0pilem1 15043 ptolemy 15086 coskpi 15110 logbrec 15222 mpodvdsmulf1o 15252 fsumdvdsmul 15253 lgslem1 15267 lgsval 15271 lgsval4 15287 lgsfcl3 15288 lgsdilem 15294 lgsdir2lem4 15298 lgsdir2lem5 15299 gausslemma2dlem5 15333 lgsquadlem2 15345 nninfsellemqall 15686 |
| Copyright terms: Public domain | W3C validator |