| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4di | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr4di.1 |
|
| eqtr4di.2 |
|
| Ref | Expression |
|---|---|
| eqtr4di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4di.1 |
. 2
| |
| 2 | eqtr4di.2 |
. . 3
| |
| 3 | 2 | eqcomi 2209 |
. 2
|
| 4 | 1, 3 | eqtrdi 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: 3eqtr4g 2263 rabxmdc 3492 relop 4829 csbcnvg 4863 dfiun3g 4936 dfiin3g 4937 resima2 4994 relcnvfld 5217 uniabio 5243 fntpg 5331 dffn5im 5626 dfimafn2 5630 fncnvima2 5703 fmptcof 5749 fcoconst 5753 fnasrng 5762 funopsn 5764 ffnov 6051 fnovim 6056 fnrnov 6094 foov 6095 funimassov 6098 ovelimab 6099 ofc12 6184 caofinvl 6186 dftpos3 6350 tfr0dm 6410 rdgisucinc 6473 oasuc 6552 ecinxp 6699 phplem1 6951 exmidpw 7007 exmidpweq 7008 unfiin 7025 fidcenumlemr 7059 0ct 7211 ctmlemr 7212 exmidaclem 7322 indpi 7457 nqnq0pi 7553 nq0m0r 7571 addnqpr1 7677 recexgt0sr 7888 suplocsrlempr 7922 recidpipr 7971 recidpirq 7973 axrnegex 7994 nntopi 8009 cnref1o 9774 fztp 10202 fseq1m1p1 10219 fz0to4untppr 10248 frecuzrdgrrn 10555 frecuzrdgsuc 10561 frecuzrdgsuctlem 10570 seq3val 10607 seqvalcd 10608 fser0const 10682 mulexpzap 10726 expaddzap 10730 bcp1m1 10912 hash2en 10990 iswrdiz 11003 cjexp 11237 rexuz3 11334 bdtri 11584 climconst 11634 sumfct 11718 zsumdc 11728 fsum3 11731 sum0 11732 fsumcnv 11781 mertenslem2 11880 zproddc 11923 fprodseq 11927 prod0 11929 prod1dc 11930 prodfct 11931 fprodcnv 11969 ef0lem 12004 efzval 12027 efival 12076 sinbnd 12096 cosbnd 12097 eucalgval 12409 eucalginv 12411 eucalglt 12412 eucalgcvga 12413 eucalg 12414 sqpweven 12530 2sqpwodd 12531 dfphi2 12575 phimullem 12580 prmdiv 12590 odzval 12597 pcval 12652 pczpre 12653 pcrec 12664 4sqlem17 12763 ennnfonelemhdmp1 12813 ennnfonelemkh 12816 ressinbasd 12939 restid2 13113 topnvalg 13116 prdsval 13138 prdsbas3 13152 pwsval 13156 pwsbas 13157 pwselbasb 13158 pwsplusgval 13160 pwsmulrval 13161 imasival 13171 imasplusg 13173 qusval 13188 xpsval 13217 ismgm 13222 plusffvalg 13227 grpidvalg 13238 igsumvalx 13254 issgrp 13268 ismnddef 13283 pws0g 13316 ismhm 13326 isgrp 13371 grpn0 13400 grpinvfvalg 13407 grpsubfvalg 13410 pwsinvg 13477 mulgfvalg 13490 mulgval 13491 mulgnn0p1 13502 issubg 13542 isnsg 13571 eqgfval 13591 quseccl0g 13600 isghm 13612 conjsubg 13646 conjsubgen 13647 iscmn 13662 mgpvalg 13718 isrng 13729 issrg 13760 isring 13795 iscrng 13798 opprvalg 13864 dfrhm2 13949 isnzr 13976 islring 13987 issubrg 14016 rrgval 14057 isdomn 14064 islmod 14086 scaffvalg 14101 lsssetm 14151 lspfval 14183 2idlval 14297 2idlvalg 14298 mulgrhm2 14405 zlmval 14422 znval 14431 znzrhfo 14443 znle2 14447 psrval 14461 mplvalcoe 14485 istps 14537 cldval 14604 ntrfval 14605 clsfval 14606 neifval 14645 restbasg 14673 tgrest 14674 txval 14760 upxp 14777 uptx 14779 txrest 14781 lmcn2 14785 cnmpt2t 14798 cnmpt2res 14802 imasnopn 14804 psmetxrge0 14837 xmetge0 14870 isxms 14956 isms 14958 bdxmet 15006 qtopbasss 15026 cnblcld 15040 mpomulcn 15071 negfcncf 15111 dvfvalap 15186 eldvap 15187 dvidlemap 15196 dvidrelem 15197 dvidsslem 15198 dvexp2 15217 dvrecap 15218 dveflem 15231 plyconst 15250 plycolemc 15263 sin0pilem1 15286 ptolemy 15329 coskpi 15353 logbrec 15465 mpodvdsmulf1o 15495 fsumdvdsmul 15496 lgslem1 15510 lgsval 15514 lgsval4 15530 lgsfcl3 15531 lgsdilem 15537 lgsdir2lem4 15541 lgsdir2lem5 15542 gausslemma2dlem5 15576 lgsquadlem2 15588 iedgedgg 15688 nninfsellemqall 15989 |
| Copyright terms: Public domain | W3C validator |