![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr4di | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtr4di.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eqtr4di.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqtr4di |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4di.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqtr4di.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2197 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | eqtrdi 2242 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: 3eqtr4g 2251 rabxmdc 3478 relop 4812 csbcnvg 4846 dfiun3g 4919 dfiin3g 4920 resima2 4976 relcnvfld 5199 uniabio 5225 fntpg 5310 dffn5im 5602 dfimafn2 5606 fncnvima2 5679 fmptcof 5725 fcoconst 5729 fnasrng 5738 ffnov 6022 fnovim 6027 fnrnov 6064 foov 6065 funimassov 6068 ovelimab 6069 ofc12 6153 caofinvl 6155 dftpos3 6315 tfr0dm 6375 rdgisucinc 6438 oasuc 6517 ecinxp 6664 phplem1 6908 exmidpw 6964 exmidpweq 6965 unfiin 6982 fidcenumlemr 7014 0ct 7166 ctmlemr 7167 exmidaclem 7268 indpi 7402 nqnq0pi 7498 nq0m0r 7516 addnqpr1 7622 recexgt0sr 7833 suplocsrlempr 7867 recidpipr 7916 recidpirq 7918 axrnegex 7939 nntopi 7954 cnref1o 9716 fztp 10144 fseq1m1p1 10161 fz0to4untppr 10190 frecuzrdgrrn 10479 frecuzrdgsuc 10485 frecuzrdgsuctlem 10494 seq3val 10531 seqvalcd 10532 fser0const 10606 mulexpzap 10650 expaddzap 10654 bcp1m1 10836 iswrdiz 10921 cjexp 11037 rexuz3 11134 bdtri 11383 climconst 11433 sumfct 11517 zsumdc 11527 fsum3 11530 sum0 11531 fsumcnv 11580 mertenslem2 11679 zproddc 11722 fprodseq 11726 prod0 11728 prod1dc 11729 prodfct 11730 fprodcnv 11768 ef0lem 11803 efzval 11826 efival 11875 sinbnd 11895 cosbnd 11896 eucalgval 12192 eucalginv 12194 eucalglt 12195 eucalgcvga 12196 eucalg 12197 sqpweven 12313 2sqpwodd 12314 dfphi2 12358 phimullem 12363 prmdiv 12373 odzval 12379 pcval 12434 pczpre 12435 pcrec 12446 4sqlem17 12545 ennnfonelemhdmp1 12566 ennnfonelemkh 12569 ressinbasd 12692 restid2 12859 topnvalg 12862 imasival 12889 imasplusg 12891 qusval 12906 xpsval 12935 ismgm 12940 plusffvalg 12945 grpidvalg 12956 igsumvalx 12972 issgrp 12986 ismnddef 12999 ismhm 13033 isgrp 13078 grpn0 13107 grpinvfvalg 13114 grpsubfvalg 13117 mulgfvalg 13191 mulgval 13192 mulgnn0p1 13203 issubg 13243 isnsg 13272 eqgfval 13292 quseccl0g 13301 isghm 13313 conjsubg 13347 conjsubgen 13348 iscmn 13363 mgpvalg 13419 isrng 13430 issrg 13461 isring 13496 iscrng 13499 opprvalg 13565 dfrhm2 13650 isnzr 13677 islring 13688 issubrg 13717 rrgval 13758 isdomn 13765 islmod 13787 scaffvalg 13802 lsssetm 13852 lspfval 13884 2idlval 13998 2idlvalg 13999 mulgrhm2 14098 zlmval 14115 znval 14124 znzrhfo 14136 znle2 14140 psrval 14152 istps 14200 cldval 14267 ntrfval 14268 clsfval 14269 neifval 14308 restbasg 14336 tgrest 14337 txval 14423 upxp 14440 uptx 14442 txrest 14444 lmcn2 14448 cnmpt2t 14461 cnmpt2res 14465 imasnopn 14467 psmetxrge0 14500 xmetge0 14533 isxms 14619 isms 14621 bdxmet 14669 qtopbasss 14689 cnblcld 14703 negfcncf 14760 dvfvalap 14835 eldvap 14836 dvidlemap 14845 dvexp2 14861 dvrecap 14862 dveflem 14872 plyconst 14891 sin0pilem1 14916 ptolemy 14959 coskpi 14983 logbrec 15092 lgslem1 15116 lgsval 15120 lgsval4 15136 lgsfcl3 15137 lgsdilem 15143 lgsdir2lem4 15147 lgsdir2lem5 15148 gausslemma2dlem5 15182 nninfsellemqall 15505 |
Copyright terms: Public domain | W3C validator |