| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4di | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr4di.1 |
|
| eqtr4di.2 |
|
| Ref | Expression |
|---|---|
| eqtr4di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4di.1 |
. 2
| |
| 2 | eqtr4di.2 |
. . 3
| |
| 3 | 2 | eqcomi 2209 |
. 2
|
| 4 | 1, 3 | eqtrdi 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: 3eqtr4g 2263 rabxmdc 3492 relop 4828 csbcnvg 4862 dfiun3g 4935 dfiin3g 4936 resima2 4993 relcnvfld 5216 uniabio 5242 fntpg 5330 dffn5im 5624 dfimafn2 5628 fncnvima2 5701 fmptcof 5747 fcoconst 5751 fnasrng 5760 funopsn 5762 ffnov 6049 fnovim 6054 fnrnov 6092 foov 6093 funimassov 6096 ovelimab 6097 ofc12 6182 caofinvl 6184 dftpos3 6348 tfr0dm 6408 rdgisucinc 6471 oasuc 6550 ecinxp 6697 phplem1 6949 exmidpw 7005 exmidpweq 7006 unfiin 7023 fidcenumlemr 7057 0ct 7209 ctmlemr 7210 exmidaclem 7320 indpi 7455 nqnq0pi 7551 nq0m0r 7569 addnqpr1 7675 recexgt0sr 7886 suplocsrlempr 7920 recidpipr 7969 recidpirq 7971 axrnegex 7992 nntopi 8007 cnref1o 9772 fztp 10200 fseq1m1p1 10217 fz0to4untppr 10246 frecuzrdgrrn 10553 frecuzrdgsuc 10559 frecuzrdgsuctlem 10568 seq3val 10605 seqvalcd 10606 fser0const 10680 mulexpzap 10724 expaddzap 10728 bcp1m1 10910 hash2en 10988 iswrdiz 11001 cjexp 11204 rexuz3 11301 bdtri 11551 climconst 11601 sumfct 11685 zsumdc 11695 fsum3 11698 sum0 11699 fsumcnv 11748 mertenslem2 11847 zproddc 11890 fprodseq 11894 prod0 11896 prod1dc 11897 prodfct 11898 fprodcnv 11936 ef0lem 11971 efzval 11994 efival 12043 sinbnd 12063 cosbnd 12064 eucalgval 12376 eucalginv 12378 eucalglt 12379 eucalgcvga 12380 eucalg 12381 sqpweven 12497 2sqpwodd 12498 dfphi2 12542 phimullem 12547 prmdiv 12557 odzval 12564 pcval 12619 pczpre 12620 pcrec 12631 4sqlem17 12730 ennnfonelemhdmp1 12780 ennnfonelemkh 12783 ressinbasd 12906 restid2 13080 topnvalg 13083 prdsval 13105 prdsbas3 13119 pwsval 13123 pwsbas 13124 pwselbasb 13125 pwsplusgval 13127 pwsmulrval 13128 imasival 13138 imasplusg 13140 qusval 13155 xpsval 13184 ismgm 13189 plusffvalg 13194 grpidvalg 13205 igsumvalx 13221 issgrp 13235 ismnddef 13250 pws0g 13283 ismhm 13293 isgrp 13338 grpn0 13367 grpinvfvalg 13374 grpsubfvalg 13377 pwsinvg 13444 mulgfvalg 13457 mulgval 13458 mulgnn0p1 13469 issubg 13509 isnsg 13538 eqgfval 13558 quseccl0g 13567 isghm 13579 conjsubg 13613 conjsubgen 13614 iscmn 13629 mgpvalg 13685 isrng 13696 issrg 13727 isring 13762 iscrng 13765 opprvalg 13831 dfrhm2 13916 isnzr 13943 islring 13954 issubrg 13983 rrgval 14024 isdomn 14031 islmod 14053 scaffvalg 14068 lsssetm 14118 lspfval 14150 2idlval 14264 2idlvalg 14265 mulgrhm2 14372 zlmval 14389 znval 14398 znzrhfo 14410 znle2 14414 psrval 14428 mplvalcoe 14452 istps 14504 cldval 14571 ntrfval 14572 clsfval 14573 neifval 14612 restbasg 14640 tgrest 14641 txval 14727 upxp 14744 uptx 14746 txrest 14748 lmcn2 14752 cnmpt2t 14765 cnmpt2res 14769 imasnopn 14771 psmetxrge0 14804 xmetge0 14837 isxms 14923 isms 14925 bdxmet 14973 qtopbasss 14993 cnblcld 15007 mpomulcn 15038 negfcncf 15078 dvfvalap 15153 eldvap 15154 dvidlemap 15163 dvidrelem 15164 dvidsslem 15165 dvexp2 15184 dvrecap 15185 dveflem 15198 plyconst 15217 plycolemc 15230 sin0pilem1 15253 ptolemy 15296 coskpi 15320 logbrec 15432 mpodvdsmulf1o 15462 fsumdvdsmul 15463 lgslem1 15477 lgsval 15481 lgsval4 15497 lgsfcl3 15498 lgsdilem 15504 lgsdir2lem4 15508 lgsdir2lem5 15509 gausslemma2dlem5 15543 lgsquadlem2 15555 iedgedgg 15655 nninfsellemqall 15956 |
| Copyright terms: Public domain | W3C validator |