Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  tridceq Unicode version

Theorem tridceq 15616
Description: Real trichotomy implies decidability of real number equality. Or in other words, analytic LPO implies analytic WLPO (see trilpo 15603 and redcwlpo 15615). Thus, this is an analytic analogue to lpowlpo 7229. (Contributed by Jim Kingdon, 24-Jul-2024.)
Assertion
Ref Expression
tridceq  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  A. x  e.  RR  A. y  e.  RR DECID  x  =  y )
Distinct variable group:    x, y

Proof of Theorem tridceq
StepHypRef Expression
1 ltne 8106 . . . . . . 7  |-  ( ( x  e.  RR  /\  x  <  y )  -> 
y  =/=  x )
21ex 115 . . . . . 6  |-  ( x  e.  RR  ->  (
x  <  y  ->  y  =/=  x ) )
32adantr 276 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  <  y  ->  y  =/=  x ) )
4 olc 712 . . . . . 6  |-  ( x  =/=  y  ->  (
x  =  y  \/  x  =/=  y ) )
5 necom 2448 . . . . . 6  |-  ( y  =/=  x  <->  x  =/=  y )
6 dcne 2375 . . . . . 6  |-  (DECID  x  =  y  <->  ( x  =  y  \/  x  =/=  y ) )
74, 5, 63imtr4i 201 . . . . 5  |-  ( y  =/=  x  -> DECID  x  =  y
)
83, 7syl6 33 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  <  y  -> DECID  x  =  y ) )
9 orc 713 . . . . . 6  |-  ( x  =  y  ->  (
x  =  y  \/  x  =/=  y ) )
109, 6sylibr 134 . . . . 5  |-  ( x  =  y  -> DECID  x  =  y
)
1110a1i 9 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  =  y  -> DECID 
x  =  y ) )
12 ltne 8106 . . . . . . 7  |-  ( ( y  e.  RR  /\  y  <  x )  ->  x  =/=  y )
1312ex 115 . . . . . 6  |-  ( y  e.  RR  ->  (
y  <  x  ->  x  =/=  y ) )
1413adantl 277 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( y  <  x  ->  x  =/=  y ) )
154, 6sylibr 134 . . . . 5  |-  ( x  =/=  y  -> DECID  x  =  y
)
1614, 15syl6 33 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( y  <  x  -> DECID  x  =  y ) )
178, 11, 163jaod 1315 . . 3  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  < 
y  \/  x  =  y  \/  y  < 
x )  -> DECID  x  =  y
) )
1817ralimdva 2561 . 2  |-  ( x  e.  RR  ->  ( A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  ->  A. y  e.  RR DECID  x  =  y ) )
1918ralimia 2555 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  A. x  e.  RR  A. y  e.  RR DECID  x  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    \/ w3o 979    e. wcel 2164    =/= wne 2364   A.wral 2472   class class class wbr 4030   RRcr 7873    < clt 8056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-pre-ltirr 7986
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-pnf 8058  df-mnf 8059  df-ltxr 8061
This theorem is referenced by:  dcapnconstALT  15622
  Copyright terms: Public domain W3C validator