| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > tridceq | Unicode version | ||
| Description: Real trichotomy implies decidability of real number equality. Or in other words, analytic LPO implies analytic WLPO (see trilpo 16019 and redcwlpo 16031). Thus, this is an analytic analogue to lpowlpo 7272. (Contributed by Jim Kingdon, 24-Jul-2024.) |
| Ref | Expression |
|---|---|
| tridceq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltne 8159 |
. . . . . . 7
| |
| 2 | 1 | ex 115 |
. . . . . 6
|
| 3 | 2 | adantr 276 |
. . . . 5
|
| 4 | olc 713 |
. . . . . 6
| |
| 5 | necom 2460 |
. . . . . 6
| |
| 6 | dcne 2387 |
. . . . . 6
| |
| 7 | 4, 5, 6 | 3imtr4i 201 |
. . . . 5
|
| 8 | 3, 7 | syl6 33 |
. . . 4
|
| 9 | orc 714 |
. . . . . 6
| |
| 10 | 9, 6 | sylibr 134 |
. . . . 5
|
| 11 | 10 | a1i 9 |
. . . 4
|
| 12 | ltne 8159 |
. . . . . . 7
| |
| 13 | 12 | ex 115 |
. . . . . 6
|
| 14 | 13 | adantl 277 |
. . . . 5
|
| 15 | 4, 6 | sylibr 134 |
. . . . 5
|
| 16 | 14, 15 | syl6 33 |
. . . 4
|
| 17 | 8, 11, 16 | 3jaod 1317 |
. . 3
|
| 18 | 17 | ralimdva 2573 |
. 2
|
| 19 | 18 | ralimia 2567 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-pre-ltirr 8039 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-pnf 8111 df-mnf 8112 df-ltxr 8114 |
| This theorem is referenced by: dcapnconstALT 16038 |
| Copyright terms: Public domain | W3C validator |