Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  tridceq Unicode version

Theorem tridceq 15999
Description: Real trichotomy implies decidability of real number equality. Or in other words, analytic LPO implies analytic WLPO (see trilpo 15986 and redcwlpo 15998). Thus, this is an analytic analogue to lpowlpo 7270. (Contributed by Jim Kingdon, 24-Jul-2024.)
Assertion
Ref Expression
tridceq  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  A. x  e.  RR  A. y  e.  RR DECID  x  =  y )
Distinct variable group:    x, y

Proof of Theorem tridceq
StepHypRef Expression
1 ltne 8157 . . . . . . 7  |-  ( ( x  e.  RR  /\  x  <  y )  -> 
y  =/=  x )
21ex 115 . . . . . 6  |-  ( x  e.  RR  ->  (
x  <  y  ->  y  =/=  x ) )
32adantr 276 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  <  y  ->  y  =/=  x ) )
4 olc 713 . . . . . 6  |-  ( x  =/=  y  ->  (
x  =  y  \/  x  =/=  y ) )
5 necom 2460 . . . . . 6  |-  ( y  =/=  x  <->  x  =/=  y )
6 dcne 2387 . . . . . 6  |-  (DECID  x  =  y  <->  ( x  =  y  \/  x  =/=  y ) )
74, 5, 63imtr4i 201 . . . . 5  |-  ( y  =/=  x  -> DECID  x  =  y
)
83, 7syl6 33 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  <  y  -> DECID  x  =  y ) )
9 orc 714 . . . . . 6  |-  ( x  =  y  ->  (
x  =  y  \/  x  =/=  y ) )
109, 6sylibr 134 . . . . 5  |-  ( x  =  y  -> DECID  x  =  y
)
1110a1i 9 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  =  y  -> DECID 
x  =  y ) )
12 ltne 8157 . . . . . . 7  |-  ( ( y  e.  RR  /\  y  <  x )  ->  x  =/=  y )
1312ex 115 . . . . . 6  |-  ( y  e.  RR  ->  (
y  <  x  ->  x  =/=  y ) )
1413adantl 277 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( y  <  x  ->  x  =/=  y ) )
154, 6sylibr 134 . . . . 5  |-  ( x  =/=  y  -> DECID  x  =  y
)
1614, 15syl6 33 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( y  <  x  -> DECID  x  =  y ) )
178, 11, 163jaod 1317 . . 3  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  < 
y  \/  x  =  y  \/  y  < 
x )  -> DECID  x  =  y
) )
1817ralimdva 2573 . 2  |-  ( x  e.  RR  ->  ( A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  ->  A. y  e.  RR DECID  x  =  y ) )
1918ralimia 2567 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  A. x  e.  RR  A. y  e.  RR DECID  x  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    \/ w3o 980    e. wcel 2176    =/= wne 2376   A.wral 2484   class class class wbr 4044   RRcr 7924    < clt 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-pre-ltirr 8037
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-pnf 8109  df-mnf 8110  df-ltxr 8112
This theorem is referenced by:  dcapnconstALT  16005
  Copyright terms: Public domain W3C validator