ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2nnnn Unicode version

Theorem peano2nnnn 7625
Description: A successor of a positive integer is a positive integer. This is a counterpart to peano2nn 8689 designed for real number axioms which involve to natural numbers (notably, axcaucvg 7672). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
peano1nnnn.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Assertion
Ref Expression
peano2nnnn  |-  ( A  e.  N  ->  ( A  +  1 )  e.  N )
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    A( x)    N( x, y)

Proof of Theorem peano2nnnn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 peano1nnnn.n . . . . . 6  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
21eleq2i 2182 . . . . 5  |-  ( A  e.  N  <->  A  e.  |^|
{ x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
3 elintg 3747 . . . . 5  |-  ( A  e.  N  ->  ( A  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  e.  z ) )
42, 3syl5bb 191 . . . 4  |-  ( A  e.  N  ->  ( A  e.  N  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  e.  z ) )
54ibi 175 . . 3  |-  ( A  e.  N  ->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  e.  z )
6 vex 2661 . . . . . . . 8  |-  z  e. 
_V
7 eleq2 2179 . . . . . . . . 9  |-  ( x  =  z  ->  (
1  e.  x  <->  1  e.  z ) )
8 eleq2 2179 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  z ) )
98raleqbi1dv 2609 . . . . . . . . 9  |-  ( x  =  z  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  z  ( y  +  1 )  e.  z ) )
107, 9anbi12d 462 . . . . . . . 8  |-  ( x  =  z  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) ) )
116, 10elab 2800 . . . . . . 7  |-  ( z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) )
1211simprbi 271 . . . . . 6  |-  ( z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ->  A. y  e.  z  ( y  +  1 )  e.  z )
13 oveq1 5747 . . . . . . . 8  |-  ( y  =  A  ->  (
y  +  1 )  =  ( A  + 
1 ) )
1413eleq1d 2184 . . . . . . 7  |-  ( y  =  A  ->  (
( y  +  1 )  e.  z  <->  ( A  +  1 )  e.  z ) )
1514rspcva 2759 . . . . . 6  |-  ( ( A  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  -> 
( A  +  1 )  e.  z )
1612, 15sylan2 282 . . . . 5  |-  ( ( A  e.  z  /\  z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )  ->  ( A  + 
1 )  e.  z )
1716expcom 115 . . . 4  |-  ( z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ->  ( A  e.  z  ->  ( A  +  1 )  e.  z ) )
1817ralimia 2468 . . 3  |-  ( A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  e.  z  ->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( A  +  1 )  e.  z )
195, 18syl 14 . 2  |-  ( A  e.  N  ->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( A  +  1 )  e.  z )
20 df-1 7592 . . . . 5  |-  1  =  <. 1R ,  0R >.
21 1sr 7523 . . . . . 6  |-  1R  e.  R.
22 0r 7522 . . . . . 6  |-  0R  e.  R.
23 opexg 4118 . . . . . 6  |-  ( ( 1R  e.  R.  /\  0R  e.  R. )  ->  <. 1R ,  0R >.  e. 
_V )
2421, 22, 23mp2an 420 . . . . 5  |-  <. 1R ,  0R >.  e.  _V
2520, 24eqeltri 2188 . . . 4  |-  1  e.  _V
26 addvalex 7616 . . . 4  |-  ( ( A  e.  N  /\  1  e.  _V )  ->  ( A  +  1 )  e.  _V )
2725, 26mpan2 419 . . 3  |-  ( A  e.  N  ->  ( A  +  1 )  e.  _V )
281eleq2i 2182 . . . 4  |-  ( ( A  +  1 )  e.  N  <->  ( A  +  1 )  e. 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
29 elintg 3747 . . . 4  |-  ( ( A  +  1 )  e.  _V  ->  (
( A  +  1 )  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( A  +  1 )  e.  z ) )
3028, 29syl5bb 191 . . 3  |-  ( ( A  +  1 )  e.  _V  ->  (
( A  +  1 )  e.  N  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( A  +  1 )  e.  z ) )
3127, 30syl 14 . 2  |-  ( A  e.  N  ->  (
( A  +  1 )  e.  N  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( A  +  1 )  e.  z ) )
3219, 31mpbird 166 1  |-  ( A  e.  N  ->  ( A  +  1 )  e.  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314    e. wcel 1463   {cab 2101   A.wral 2391   _Vcvv 2658   <.cop 3498   |^|cint 3739  (class class class)co 5740   R.cnr 7069   0Rc0r 7070   1Rc1r 7071   1c1 7585    + caddc 7587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-eprel 4179  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-irdg 6233  df-1o 6279  df-2o 6280  df-oadd 6283  df-omul 6284  df-er 6395  df-ec 6397  df-qs 6401  df-ni 7076  df-pli 7077  df-mi 7078  df-lti 7079  df-plpq 7116  df-mpq 7117  df-enq 7119  df-nqqs 7120  df-plqqs 7121  df-mqqs 7122  df-1nqqs 7123  df-rq 7124  df-ltnqqs 7125  df-enq0 7196  df-nq0 7197  df-0nq0 7198  df-plq0 7199  df-mq0 7200  df-inp 7238  df-i1p 7239  df-iplp 7240  df-enr 7498  df-nr 7499  df-0r 7503  df-1r 7504  df-c 7590  df-1 7592  df-add 7595
This theorem is referenced by:  nnindnn  7665
  Copyright terms: Public domain W3C validator