| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2nnnn | Unicode version | ||
| Description: A successor of a positive integer is a positive integer. This is a counterpart to peano2nn 9122 designed for real number axioms which involve to natural numbers (notably, axcaucvg 8087). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| peano1nnnn.n |
|
| Ref | Expression |
|---|---|
| peano2nnnn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1nnnn.n |
. . . . . 6
| |
| 2 | 1 | eleq2i 2296 |
. . . . 5
|
| 3 | elintg 3931 |
. . . . 5
| |
| 4 | 2, 3 | bitrid 192 |
. . . 4
|
| 5 | 4 | ibi 176 |
. . 3
|
| 6 | vex 2802 |
. . . . . . . 8
| |
| 7 | eleq2 2293 |
. . . . . . . . 9
| |
| 8 | eleq2 2293 |
. . . . . . . . . 10
| |
| 9 | 8 | raleqbi1dv 2740 |
. . . . . . . . 9
|
| 10 | 7, 9 | anbi12d 473 |
. . . . . . . 8
|
| 11 | 6, 10 | elab 2947 |
. . . . . . 7
|
| 12 | 11 | simprbi 275 |
. . . . . 6
|
| 13 | oveq1 6008 |
. . . . . . . 8
| |
| 14 | 13 | eleq1d 2298 |
. . . . . . 7
|
| 15 | 14 | rspcva 2905 |
. . . . . 6
|
| 16 | 12, 15 | sylan2 286 |
. . . . 5
|
| 17 | 16 | expcom 116 |
. . . 4
|
| 18 | 17 | ralimia 2591 |
. . 3
|
| 19 | 5, 18 | syl 14 |
. 2
|
| 20 | df-1 8007 |
. . . . 5
| |
| 21 | 1sr 7938 |
. . . . . 6
| |
| 22 | 0r 7937 |
. . . . . 6
| |
| 23 | opexg 4314 |
. . . . . 6
| |
| 24 | 21, 22, 23 | mp2an 426 |
. . . . 5
|
| 25 | 20, 24 | eqeltri 2302 |
. . . 4
|
| 26 | addvalex 8031 |
. . . 4
| |
| 27 | 25, 26 | mpan2 425 |
. . 3
|
| 28 | 1 | eleq2i 2296 |
. . . 4
|
| 29 | elintg 3931 |
. . . 4
| |
| 30 | 28, 29 | bitrid 192 |
. . 3
|
| 31 | 27, 30 | syl 14 |
. 2
|
| 32 | 19, 31 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-1o 6562 df-2o 6563 df-oadd 6566 df-omul 6567 df-er 6680 df-ec 6682 df-qs 6686 df-ni 7491 df-pli 7492 df-mi 7493 df-lti 7494 df-plpq 7531 df-mpq 7532 df-enq 7534 df-nqqs 7535 df-plqqs 7536 df-mqqs 7537 df-1nqqs 7538 df-rq 7539 df-ltnqqs 7540 df-enq0 7611 df-nq0 7612 df-0nq0 7613 df-plq0 7614 df-mq0 7615 df-inp 7653 df-i1p 7654 df-iplp 7655 df-enr 7913 df-nr 7914 df-0r 7918 df-1r 7919 df-c 8005 df-1 8007 df-add 8010 |
| This theorem is referenced by: nnindnn 8080 |
| Copyright terms: Public domain | W3C validator |