ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rbropap Unicode version

Theorem rbropap 6331
Description: Properties of a pair in a restricted binary relation  M expressed as an ordered-pair class abstraction:  M is the binary relation  W restricted by the condition 
ps. (Contributed by AV, 31-Jan-2021.)
Hypotheses
Ref Expression
rbropapd.1  |-  ( ph  ->  M  =  { <. f ,  p >.  |  ( f W p  /\  ps ) } )
rbropapd.2  |-  ( ( f  =  F  /\  p  =  P )  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
rbropap  |-  ( (
ph  /\  F  e.  X  /\  P  e.  Y
)  ->  ( F M P  <->  ( F W P  /\  ch )
) )
Distinct variable groups:    f, F, p    P, f, p    f, W, p    ch, f, p
Allowed substitution hints:    ph( f, p)    ps( f, p)    M( f, p)    X( f, p)    Y( f, p)

Proof of Theorem rbropap
StepHypRef Expression
1 rbropapd.1 . . 3  |-  ( ph  ->  M  =  { <. f ,  p >.  |  ( f W p  /\  ps ) } )
2 rbropapd.2 . . 3  |-  ( ( f  =  F  /\  p  =  P )  ->  ( ps  <->  ch )
)
31, 2rbropapd 6330 . 2  |-  ( ph  ->  ( ( F  e.  X  /\  P  e.  Y )  ->  ( F M P  <->  ( F W P  /\  ch )
) ) )
433impib 1204 1  |-  ( (
ph  /\  F  e.  X  /\  P  e.  Y
)  ->  ( F M P  <->  ( F W P  /\  ch )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   class class class wbr 4045   {copab 4105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator