ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rbropap Unicode version

Theorem rbropap 6140
Description: Properties of a pair in a restricted binary relation  M expressed as an ordered-pair class abstraction:  M is the binary relation  W restricted by the condition 
ps. (Contributed by AV, 31-Jan-2021.)
Hypotheses
Ref Expression
rbropapd.1  |-  ( ph  ->  M  =  { <. f ,  p >.  |  ( f W p  /\  ps ) } )
rbropapd.2  |-  ( ( f  =  F  /\  p  =  P )  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
rbropap  |-  ( (
ph  /\  F  e.  X  /\  P  e.  Y
)  ->  ( F M P  <->  ( F W P  /\  ch )
) )
Distinct variable groups:    f, F, p    P, f, p    f, W, p    ch, f, p
Allowed substitution hints:    ph( f, p)    ps( f, p)    M( f, p)    X( f, p)    Y( f, p)

Proof of Theorem rbropap
StepHypRef Expression
1 rbropapd.1 . . 3  |-  ( ph  ->  M  =  { <. f ,  p >.  |  ( f W p  /\  ps ) } )
2 rbropapd.2 . . 3  |-  ( ( f  =  F  /\  p  =  P )  ->  ( ps  <->  ch )
)
31, 2rbropapd 6139 . 2  |-  ( ph  ->  ( ( F  e.  X  /\  P  e.  Y )  ->  ( F M P  <->  ( F W P  /\  ch )
) ) )
433impib 1179 1  |-  ( (
ph  /\  F  e.  X  /\  P  e.  Y
)  ->  ( F M P  <->  ( F W P  /\  ch )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3929   {copab 3988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator