ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rbropap Unicode version

Theorem rbropap 6246
Description: Properties of a pair in a restricted binary relation  M expressed as an ordered-pair class abstraction:  M is the binary relation  W restricted by the condition 
ps. (Contributed by AV, 31-Jan-2021.)
Hypotheses
Ref Expression
rbropapd.1  |-  ( ph  ->  M  =  { <. f ,  p >.  |  ( f W p  /\  ps ) } )
rbropapd.2  |-  ( ( f  =  F  /\  p  =  P )  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
rbropap  |-  ( (
ph  /\  F  e.  X  /\  P  e.  Y
)  ->  ( F M P  <->  ( F W P  /\  ch )
) )
Distinct variable groups:    f, F, p    P, f, p    f, W, p    ch, f, p
Allowed substitution hints:    ph( f, p)    ps( f, p)    M( f, p)    X( f, p)    Y( f, p)

Proof of Theorem rbropap
StepHypRef Expression
1 rbropapd.1 . . 3  |-  ( ph  ->  M  =  { <. f ,  p >.  |  ( f W p  /\  ps ) } )
2 rbropapd.2 . . 3  |-  ( ( f  =  F  /\  p  =  P )  ->  ( ps  <->  ch )
)
31, 2rbropapd 6245 . 2  |-  ( ph  ->  ( ( F  e.  X  /\  P  e.  Y )  ->  ( F M P  <->  ( F W P  /\  ch )
) ) )
433impib 1201 1  |-  ( (
ph  /\  F  e.  X  /\  P  e.  Y
)  ->  ( F M P  <->  ( F W P  /\  ch )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4005   {copab 4065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator