ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rbropapd Unicode version

Theorem rbropapd 6295
Description: Properties of a pair in an extended binary relation. (Contributed by Alexander van der Vekens, 30-Oct-2017.)
Hypotheses
Ref Expression
rbropapd.1  |-  ( ph  ->  M  =  { <. f ,  p >.  |  ( f W p  /\  ps ) } )
rbropapd.2  |-  ( ( f  =  F  /\  p  =  P )  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
rbropapd  |-  ( ph  ->  ( ( F  e.  X  /\  P  e.  Y )  ->  ( F M P  <->  ( F W P  /\  ch )
) ) )
Distinct variable groups:    f, F, p    P, f, p    f, W, p    ch, f, p
Allowed substitution hints:    ph( f, p)    ps( f, p)    M( f, p)    X( f, p)    Y( f, p)

Proof of Theorem rbropapd
StepHypRef Expression
1 df-br 4030 . . . 4  |-  ( F M P  <->  <. F ,  P >.  e.  M )
2 rbropapd.1 . . . . 5  |-  ( ph  ->  M  =  { <. f ,  p >.  |  ( f W p  /\  ps ) } )
32eleq2d 2263 . . . 4  |-  ( ph  ->  ( <. F ,  P >.  e.  M  <->  <. F ,  P >.  e.  { <. f ,  p >.  |  ( f W p  /\  ps ) } ) )
41, 3bitrid 192 . . 3  |-  ( ph  ->  ( F M P  <->  <. F ,  P >.  e. 
{ <. f ,  p >.  |  ( f W p  /\  ps ) } ) )
5 breq12 4034 . . . . 5  |-  ( ( f  =  F  /\  p  =  P )  ->  ( f W p  <-> 
F W P ) )
6 rbropapd.2 . . . . 5  |-  ( ( f  =  F  /\  p  =  P )  ->  ( ps  <->  ch )
)
75, 6anbi12d 473 . . . 4  |-  ( ( f  =  F  /\  p  =  P )  ->  ( ( f W p  /\  ps )  <->  ( F W P  /\  ch ) ) )
87opelopabga 4293 . . 3  |-  ( ( F  e.  X  /\  P  e.  Y )  ->  ( <. F ,  P >.  e.  { <. f ,  p >.  |  (
f W p  /\  ps ) }  <->  ( F W P  /\  ch )
) )
94, 8sylan9bb 462 . 2  |-  ( (
ph  /\  ( F  e.  X  /\  P  e.  Y ) )  -> 
( F M P  <-> 
( F W P  /\  ch ) ) )
109ex 115 1  |-  ( ph  ->  ( ( F  e.  X  /\  P  e.  Y )  ->  ( F M P  <->  ( F W P  /\  ch )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   <.cop 3621   class class class wbr 4029   {copab 4089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091
This theorem is referenced by:  rbropap  6296
  Copyright terms: Public domain W3C validator