ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveq0 Unicode version

Theorem cnveq0 5087
Description: A relation empty iff its converse is empty. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
cnveq0  |-  ( Rel 
A  ->  ( A  =  (/)  <->  `' A  =  (/) ) )

Proof of Theorem cnveq0
StepHypRef Expression
1 cnv0 5034 . 2  |-  `' (/)  =  (/)
2 rel0 4753 . . . . 5  |-  Rel  (/)
3 cnveqb 5086 . . . . 5  |-  ( ( Rel  A  /\  Rel  (/) )  ->  ( A  =  (/)  <->  `' A  =  `' (/) ) )
42, 3mpan2 425 . . . 4  |-  ( Rel 
A  ->  ( A  =  (/)  <->  `' A  =  `' (/) ) )
5 eqeq2 2187 . . . . 5  |-  ( (/)  =  `' (/)  ->  ( `' A  =  (/)  <->  `' A  =  `' (/) ) )
65bibi2d 232 . . . 4  |-  ( (/)  =  `' (/)  ->  ( ( A  =  (/)  <->  `' A  =  (/) )  <->  ( A  =  (/)  <->  `' A  =  `' (/) ) ) )
74, 6imbitrrid 156 . . 3  |-  ( (/)  =  `' (/)  ->  ( Rel  A  ->  ( A  =  (/) 
<->  `' A  =  (/) ) ) )
87eqcoms 2180 . 2  |-  ( `' (/)  =  (/)  ->  ( Rel 
A  ->  ( A  =  (/)  <->  `' A  =  (/) ) ) )
91, 8ax-mp 5 1  |-  ( Rel 
A  ->  ( A  =  (/)  <->  `' A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353   (/)c0 3424   `'ccnv 4627   Rel wrel 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator