ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveq0 Unicode version

Theorem cnveq0 5126
Description: A relation empty iff its converse is empty. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
cnveq0  |-  ( Rel 
A  ->  ( A  =  (/)  <->  `' A  =  (/) ) )

Proof of Theorem cnveq0
StepHypRef Expression
1 cnv0 5073 . 2  |-  `' (/)  =  (/)
2 rel0 4788 . . . . 5  |-  Rel  (/)
3 cnveqb 5125 . . . . 5  |-  ( ( Rel  A  /\  Rel  (/) )  ->  ( A  =  (/)  <->  `' A  =  `' (/) ) )
42, 3mpan2 425 . . . 4  |-  ( Rel 
A  ->  ( A  =  (/)  <->  `' A  =  `' (/) ) )
5 eqeq2 2206 . . . . 5  |-  ( (/)  =  `' (/)  ->  ( `' A  =  (/)  <->  `' A  =  `' (/) ) )
65bibi2d 232 . . . 4  |-  ( (/)  =  `' (/)  ->  ( ( A  =  (/)  <->  `' A  =  (/) )  <->  ( A  =  (/)  <->  `' A  =  `' (/) ) ) )
74, 6imbitrrid 156 . . 3  |-  ( (/)  =  `' (/)  ->  ( Rel  A  ->  ( A  =  (/) 
<->  `' A  =  (/) ) ) )
87eqcoms 2199 . 2  |-  ( `' (/)  =  (/)  ->  ( Rel 
A  ->  ( A  =  (/)  <->  `' A  =  (/) ) ) )
91, 8ax-mp 5 1  |-  ( Rel 
A  ->  ( A  =  (/)  <->  `' A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   (/)c0 3450   `'ccnv 4662   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator