![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rel0 | GIF version |
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.) |
Ref | Expression |
---|---|
rel0 | ⊢ Rel ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3485 | . 2 ⊢ ∅ ⊆ (V × V) | |
2 | df-rel 4666 | . 2 ⊢ (Rel ∅ ↔ ∅ ⊆ (V × V)) | |
3 | 1, 2 | mpbir 146 | 1 ⊢ Rel ∅ |
Colors of variables: wff set class |
Syntax hints: Vcvv 2760 ⊆ wss 3153 ∅c0 3446 × cxp 4657 Rel wrel 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 df-nul 3447 df-rel 4666 |
This theorem is referenced by: reldm0 4880 cnv0 5069 cnveq0 5122 co02 5179 co01 5180 tpos0 6327 0er 6621 |
Copyright terms: Public domain | W3C validator |