ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rel0 GIF version

Theorem rel0 4798
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
Assertion
Ref Expression
rel0 Rel ∅

Proof of Theorem rel0
StepHypRef Expression
1 0ss 3498 . 2 ∅ ⊆ (V × V)
2 df-rel 4680 . 2 (Rel ∅ ↔ ∅ ⊆ (V × V))
31, 2mpbir 146 1 Rel ∅
Colors of variables: wff set class
Syntax hints:  Vcvv 2771  wss 3165  c0 3459   × cxp 4671  Rel wrel 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-dif 3167  df-in 3171  df-ss 3178  df-nul 3460  df-rel 4680
This theorem is referenced by:  reldm0  4894  cnv0  5083  cnveq0  5136  co02  5193  co01  5194  tpos0  6350  0er  6644
  Copyright terms: Public domain W3C validator