ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rel0 GIF version

Theorem rel0 4843
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
Assertion
Ref Expression
rel0 Rel ∅

Proof of Theorem rel0
StepHypRef Expression
1 0ss 3530 . 2 ∅ ⊆ (V × V)
2 df-rel 4725 . 2 (Rel ∅ ↔ ∅ ⊆ (V × V))
31, 2mpbir 146 1 Rel ∅
Colors of variables: wff set class
Syntax hints:  Vcvv 2799  wss 3197  c0 3491   × cxp 4716  Rel wrel 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-rel 4725
This theorem is referenced by:  reldm0  4940  cnv0  5131  cnveq0  5184  co02  5241  co01  5242  tpos0  6418  0er  6712
  Copyright terms: Public domain W3C validator