ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rel0 GIF version

Theorem rel0 4753
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
Assertion
Ref Expression
rel0 Rel ∅

Proof of Theorem rel0
StepHypRef Expression
1 0ss 3463 . 2 ∅ ⊆ (V × V)
2 df-rel 4635 . 2 (Rel ∅ ↔ ∅ ⊆ (V × V))
31, 2mpbir 146 1 Rel ∅
Colors of variables: wff set class
Syntax hints:  Vcvv 2739  wss 3131  c0 3424   × cxp 4626  Rel wrel 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-in 3137  df-ss 3144  df-nul 3425  df-rel 4635
This theorem is referenced by:  reldm0  4847  cnv0  5034  cnveq0  5087  co02  5144  co01  5145  tpos0  6277  0er  6571
  Copyright terms: Public domain W3C validator