ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reluni GIF version

Theorem reluni 4751
Description: The union of a class is a relation iff any member is a relation. Exercise 6 of [TakeutiZaring] p. 25 and its converse. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
reluni (Rel 𝐴 ↔ ∀𝑥𝐴 Rel 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem reluni
StepHypRef Expression
1 uniiun 3942 . . 3 𝐴 = 𝑥𝐴 𝑥
21releqi 4711 . 2 (Rel 𝐴 ↔ Rel 𝑥𝐴 𝑥)
3 reliun 4749 . 2 (Rel 𝑥𝐴 𝑥 ↔ ∀𝑥𝐴 Rel 𝑥)
42, 3bitri 184 1 (Rel 𝐴 ↔ ∀𝑥𝐴 Rel 𝑥)
Colors of variables: wff set class
Syntax hints:  wb 105  wral 2455   cuni 3811   ciun 3888  Rel wrel 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-in 3137  df-ss 3144  df-uni 3812  df-iun 3890  df-rel 4635
This theorem is referenced by:  fununi  5286  tfrlem6  6319
  Copyright terms: Public domain W3C validator