ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reluni GIF version

Theorem reluni 4727
Description: The union of a class is a relation iff any member is a relation. Exercise 6 of [TakeutiZaring] p. 25 and its converse. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
reluni (Rel 𝐴 ↔ ∀𝑥𝐴 Rel 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem reluni
StepHypRef Expression
1 uniiun 3919 . . 3 𝐴 = 𝑥𝐴 𝑥
21releqi 4687 . 2 (Rel 𝐴 ↔ Rel 𝑥𝐴 𝑥)
3 reliun 4725 . 2 (Rel 𝑥𝐴 𝑥 ↔ ∀𝑥𝐴 Rel 𝑥)
42, 3bitri 183 1 (Rel 𝐴 ↔ ∀𝑥𝐴 Rel 𝑥)
Colors of variables: wff set class
Syntax hints:  wb 104  wral 2444   cuni 3789   ciun 3866  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-uni 3790  df-iun 3868  df-rel 4611
This theorem is referenced by:  fununi  5256  tfrlem6  6284
  Copyright terms: Public domain W3C validator