| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reluni | GIF version | ||
| Description: The union of a class is a relation iff any member is a relation. Exercise 6 of [TakeutiZaring] p. 25 and its converse. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| reluni | ⊢ (Rel ∪ 𝐴 ↔ ∀𝑥 ∈ 𝐴 Rel 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniiun 3987 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
| 2 | 1 | releqi 4766 | . 2 ⊢ (Rel ∪ 𝐴 ↔ Rel ∪ 𝑥 ∈ 𝐴 𝑥) |
| 3 | reliun 4804 | . 2 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 𝑥 ↔ ∀𝑥 ∈ 𝐴 Rel 𝑥) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (Rel ∪ 𝐴 ↔ ∀𝑥 ∈ 𝐴 Rel 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wral 2485 ∪ cuni 3856 ∪ ciun 3933 Rel wrel 4688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-in 3176 df-ss 3183 df-uni 3857 df-iun 3935 df-rel 4690 |
| This theorem is referenced by: fununi 5351 tfrlem6 6415 |
| Copyright terms: Public domain | W3C validator |