ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem6 Unicode version

Theorem tfrlem6 6462
Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem6  |-  Rel recs ( F )
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem6
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 reluni 4842 . . 3  |-  ( Rel  U. A  <->  A. g  e.  A  Rel  g )
2 tfrlem.1 . . . . 5  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
32tfrlem4 6459 . . . 4  |-  ( g  e.  A  ->  Fun  g )
4 funrel 5335 . . . 4  |-  ( Fun  g  ->  Rel  g )
53, 4syl 14 . . 3  |-  ( g  e.  A  ->  Rel  g )
61, 5mprgbir 2588 . 2  |-  Rel  U. A
72recsfval 6461 . . 3  |- recs ( F )  =  U. A
87releqi 4802 . 2  |-  ( Rel recs
( F )  <->  Rel  U. A
)
96, 8mpbir 146 1  |-  Rel recs ( F )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    e. wcel 2200   {cab 2215   A.wral 2508   E.wrex 2509   U.cuni 3888   Oncon0 4454    |` cres 4721   Rel wrel 4724   Fun wfun 5312    Fn wfn 5313   ` cfv 5318  recscrecs 6450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-recs 6451
This theorem is referenced by:  tfrlem7  6463
  Copyright terms: Public domain W3C validator