ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem6 Unicode version

Theorem tfrlem6 6425
Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem6  |-  Rel recs ( F )
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem6
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 reluni 4816 . . 3  |-  ( Rel  U. A  <->  A. g  e.  A  Rel  g )
2 tfrlem.1 . . . . 5  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
32tfrlem4 6422 . . . 4  |-  ( g  e.  A  ->  Fun  g )
4 funrel 5307 . . . 4  |-  ( Fun  g  ->  Rel  g )
53, 4syl 14 . . 3  |-  ( g  e.  A  ->  Rel  g )
61, 5mprgbir 2566 . 2  |-  Rel  U. A
72recsfval 6424 . . 3  |- recs ( F )  =  U. A
87releqi 4776 . 2  |-  ( Rel recs
( F )  <->  Rel  U. A
)
96, 8mpbir 146 1  |-  Rel recs ( F )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2178   {cab 2193   A.wral 2486   E.wrex 2487   U.cuni 3864   Oncon0 4428    |` cres 4695   Rel wrel 4698   Fun wfun 5284    Fn wfn 5285   ` cfv 5290  recscrecs 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-recs 6414
This theorem is referenced by:  tfrlem7  6426
  Copyright terms: Public domain W3C validator