Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrlem6 | Unicode version |
Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
tfrlem.1 |
Ref | Expression |
---|---|
tfrlem6 | recs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reluni 4706 | . . 3 | |
2 | tfrlem.1 | . . . . 5 | |
3 | 2 | tfrlem4 6254 | . . . 4 |
4 | funrel 5184 | . . . 4 | |
5 | 3, 4 | syl 14 | . . 3 |
6 | 1, 5 | mprgbir 2515 | . 2 |
7 | 2 | recsfval 6256 | . . 3 recs |
8 | 7 | releqi 4666 | . 2 recs |
9 | 6, 8 | mpbir 145 | 1 recs |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1335 wcel 2128 cab 2143 wral 2435 wrex 2436 cuni 3772 con0 4322 cres 4585 wrel 4588 wfun 5161 wfn 5162 cfv 5167 recscrecs 6245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-res 4595 df-iota 5132 df-fun 5169 df-fn 5170 df-fv 5175 df-recs 6246 |
This theorem is referenced by: tfrlem7 6258 |
Copyright terms: Public domain | W3C validator |