ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem6 Unicode version

Theorem tfrlem6 6369
Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem6  |-  Rel recs ( F )
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem6
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 reluni 4782 . . 3  |-  ( Rel  U. A  <->  A. g  e.  A  Rel  g )
2 tfrlem.1 . . . . 5  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
32tfrlem4 6366 . . . 4  |-  ( g  e.  A  ->  Fun  g )
4 funrel 5271 . . . 4  |-  ( Fun  g  ->  Rel  g )
53, 4syl 14 . . 3  |-  ( g  e.  A  ->  Rel  g )
61, 5mprgbir 2552 . 2  |-  Rel  U. A
72recsfval 6368 . . 3  |- recs ( F )  =  U. A
87releqi 4742 . 2  |-  ( Rel recs
( F )  <->  Rel  U. A
)
96, 8mpbir 146 1  |-  Rel recs ( F )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   U.cuni 3835   Oncon0 4394    |` cres 4661   Rel wrel 4664   Fun wfun 5248    Fn wfn 5249   ` cfv 5254  recscrecs 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-recs 6358
This theorem is referenced by:  tfrlem7  6370
  Copyright terms: Public domain W3C validator