Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrlem6 | Unicode version |
Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
tfrlem.1 |
Ref | Expression |
---|---|
tfrlem6 | recs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reluni 4727 | . . 3 | |
2 | tfrlem.1 | . . . . 5 | |
3 | 2 | tfrlem4 6281 | . . . 4 |
4 | funrel 5205 | . . . 4 | |
5 | 3, 4 | syl 14 | . . 3 |
6 | 1, 5 | mprgbir 2524 | . 2 |
7 | 2 | recsfval 6283 | . . 3 recs |
8 | 7 | releqi 4687 | . 2 recs |
9 | 6, 8 | mpbir 145 | 1 recs |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wcel 2136 cab 2151 wral 2444 wrex 2445 cuni 3789 con0 4341 cres 4606 wrel 4609 wfun 5182 wfn 5183 cfv 5188 recscrecs 6272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-recs 6273 |
This theorem is referenced by: tfrlem7 6285 |
Copyright terms: Public domain | W3C validator |