ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem6 Unicode version

Theorem tfrlem6 6295
Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem6  |-  Rel recs ( F )
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem6
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 reluni 4734 . . 3  |-  ( Rel  U. A  <->  A. g  e.  A  Rel  g )
2 tfrlem.1 . . . . 5  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
32tfrlem4 6292 . . . 4  |-  ( g  e.  A  ->  Fun  g )
4 funrel 5215 . . . 4  |-  ( Fun  g  ->  Rel  g )
53, 4syl 14 . . 3  |-  ( g  e.  A  ->  Rel  g )
61, 5mprgbir 2528 . 2  |-  Rel  U. A
72recsfval 6294 . . 3  |- recs ( F )  =  U. A
87releqi 4694 . 2  |-  ( Rel recs
( F )  <->  Rel  U. A
)
96, 8mpbir 145 1  |-  Rel recs ( F )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   E.wrex 2449   U.cuni 3796   Oncon0 4348    |` cres 4613   Rel wrel 4616   Fun wfun 5192    Fn wfn 5193   ` cfv 5198  recscrecs 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-recs 6284
This theorem is referenced by:  tfrlem7  6296
  Copyright terms: Public domain W3C validator