ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resabs2 GIF version

Theorem resabs2 4956
Description: Absorption law for restriction. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
resabs2 (𝐵𝐶 → ((𝐴𝐵) ↾ 𝐶) = (𝐴𝐵))

Proof of Theorem resabs2
StepHypRef Expression
1 rescom 4950 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ↾ 𝐵)
2 resabs1 4954 . 2 (𝐵𝐶 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))
31, 2eqtrid 2234 1 (𝐵𝐶 → ((𝐴𝐵) ↾ 𝐶) = (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3144  cres 4646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-opab 4080  df-xp 4650  df-rel 4651  df-res 4656
This theorem is referenced by:  residm  4957
  Copyright terms: Public domain W3C validator