ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  residm Unicode version

Theorem residm 4957
Description: Idempotent law for restriction. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
residm  |-  ( ( A  |`  B )  |`  B )  =  ( A  |`  B )

Proof of Theorem residm
StepHypRef Expression
1 ssid 3190 . 2  |-  B  C_  B
2 resabs2 4956 . 2  |-  ( B 
C_  B  ->  (
( A  |`  B )  |`  B )  =  ( A  |`  B )
)
31, 2ax-mp 5 1  |-  ( ( A  |`  B )  |`  B )  =  ( A  |`  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    C_ wss 3144    |` cres 4646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-opab 4080  df-xp 4650  df-rel 4651  df-res 4656
This theorem is referenced by:  resima  4958  fvsnun2  5735
  Copyright terms: Public domain W3C validator