ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  residm Unicode version

Theorem residm 4941
Description: Idempotent law for restriction. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
residm  |-  ( ( A  |`  B )  |`  B )  =  ( A  |`  B )

Proof of Theorem residm
StepHypRef Expression
1 ssid 3177 . 2  |-  B  C_  B
2 resabs2 4940 . 2  |-  ( B 
C_  B  ->  (
( A  |`  B )  |`  B )  =  ( A  |`  B )
)
31, 2ax-mp 5 1  |-  ( ( A  |`  B )  |`  B )  =  ( A  |`  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1353    C_ wss 3131    |` cres 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-opab 4067  df-xp 4634  df-rel 4635  df-res 4640
This theorem is referenced by:  resima  4942  fvsnun2  5716
  Copyright terms: Public domain W3C validator