ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq2d Unicode version

Theorem reseq2d 5004
Description: Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
reseqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
reseq2d  |-  ( ph  ->  ( C  |`  A )  =  ( C  |`  B ) )

Proof of Theorem reseq2d
StepHypRef Expression
1 reseqd.1 . 2  |-  ( ph  ->  A  =  B )
2 reseq2 4999 . 2  |-  ( A  =  B  ->  ( C  |`  A )  =  ( C  |`  B ) )
31, 2syl 14 1  |-  ( ph  ->  ( C  |`  A )  =  ( C  |`  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    |` cres 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-opab 4145  df-xp 4724  df-res 4730
This theorem is referenced by:  reseq12d  5005  resima2  5038  relresfld  5257  f1orescnv  5587  funcocnv2  5596  fococnv2  5597  fnressn  5824  oprssov  6146  dftpos2  6405  fnsnsplitdc  6649  dif1en  7037  sbthlemi4  7123  fseq1p1m1  10286  resunimafz0  11048  setsvala  13058  metreslem  15048  xmspropd  15145  mspropd  15146  bj-charfundcALT  16130
  Copyright terms: Public domain W3C validator