Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq2d Unicode version

Theorem reseq2d 4814
 Description: Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
reseqd.1
Assertion
Ref Expression
reseq2d

Proof of Theorem reseq2d
StepHypRef Expression
1 reseqd.1 . 2
2 reseq2 4809 . 2
31, 2syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1331   cres 4536 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-in 3072  df-opab 3985  df-xp 4540  df-res 4546 This theorem is referenced by:  reseq12d  4815  resima2  4848  relresfld  5063  f1orescnv  5376  funcocnv2  5385  fococnv2  5386  fnressn  5599  oprssov  5905  dftpos2  6151  fnsnsplitdc  6394  dif1en  6766  sbthlemi4  6841  fseq1p1m1  9867  resunimafz0  10567  setsvala  11979  metreslem  12538  xmspropd  12635  mspropd  12636
 Copyright terms: Public domain W3C validator