| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq2d | Unicode version | ||
| Description: Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| reseqd.1 |
|
| Ref | Expression |
|---|---|
| reseq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqd.1 |
. 2
| |
| 2 | reseq2 4954 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-opab 4106 df-xp 4681 df-res 4687 |
| This theorem is referenced by: reseq12d 4960 resima2 4993 relresfld 5212 f1orescnv 5538 funcocnv2 5547 fococnv2 5548 fnressn 5770 oprssov 6088 dftpos2 6347 fnsnsplitdc 6591 dif1en 6976 sbthlemi4 7062 fseq1p1m1 10216 resunimafz0 10976 setsvala 12863 metreslem 14852 xmspropd 14949 mspropd 14950 bj-charfundcALT 15745 |
| Copyright terms: Public domain | W3C validator |