Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reseq2d | Unicode version |
Description: Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
reseqd.1 |
Ref | Expression |
---|---|
reseq2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqd.1 | . 2 | |
2 | reseq2 4860 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 cres 4587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-in 3108 df-opab 4026 df-xp 4591 df-res 4597 |
This theorem is referenced by: reseq12d 4866 resima2 4899 relresfld 5114 f1orescnv 5429 funcocnv2 5438 fococnv2 5439 fnressn 5652 oprssov 5959 dftpos2 6205 fnsnsplitdc 6449 dif1en 6821 sbthlemi4 6901 fseq1p1m1 9991 resunimafz0 10697 setsvala 12208 metreslem 12767 xmspropd 12864 mspropd 12865 bj-charfundcALT 13371 |
Copyright terms: Public domain | W3C validator |