| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq2d | Unicode version | ||
| Description: Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| reseqd.1 |
|
| Ref | Expression |
|---|---|
| reseq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqd.1 |
. 2
| |
| 2 | reseq2 4999 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-opab 4145 df-xp 4724 df-res 4730 |
| This theorem is referenced by: reseq12d 5005 resima2 5038 relresfld 5257 f1orescnv 5587 funcocnv2 5596 fococnv2 5597 fnressn 5824 oprssov 6146 dftpos2 6405 fnsnsplitdc 6649 dif1en 7037 sbthlemi4 7123 fseq1p1m1 10286 resunimafz0 11048 setsvala 13058 metreslem 15048 xmspropd 15145 mspropd 15146 bj-charfundcALT 16130 |
| Copyright terms: Public domain | W3C validator |