| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > reseq2d | Unicode version | ||
| Description: Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| reseqd.1 | 
 | 
| Ref | Expression | 
|---|---|
| reseq2d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reseqd.1 | 
. 2
 | |
| 2 | reseq2 4941 | 
. 2
 | |
| 3 | 1, 2 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-opab 4095 df-xp 4669 df-res 4675 | 
| This theorem is referenced by: reseq12d 4947 resima2 4980 relresfld 5199 f1orescnv 5520 funcocnv2 5529 fococnv2 5530 fnressn 5748 oprssov 6065 dftpos2 6319 fnsnsplitdc 6563 dif1en 6940 sbthlemi4 7026 fseq1p1m1 10169 resunimafz0 10923 setsvala 12709 metreslem 14616 xmspropd 14713 mspropd 14714 bj-charfundcALT 15455 | 
| Copyright terms: Public domain | W3C validator |