ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq2d Unicode version

Theorem reseq2d 4865
Description: Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
reseqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
reseq2d  |-  ( ph  ->  ( C  |`  A )  =  ( C  |`  B ) )

Proof of Theorem reseq2d
StepHypRef Expression
1 reseqd.1 . 2  |-  ( ph  ->  A  =  B )
2 reseq2 4860 . 2  |-  ( A  =  B  ->  ( C  |`  A )  =  ( C  |`  B ) )
31, 2syl 14 1  |-  ( ph  ->  ( C  |`  A )  =  ( C  |`  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335    |` cres 4587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-in 3108  df-opab 4026  df-xp 4591  df-res 4597
This theorem is referenced by:  reseq12d  4866  resima2  4899  relresfld  5114  f1orescnv  5429  funcocnv2  5438  fococnv2  5439  fnressn  5652  oprssov  5959  dftpos2  6205  fnsnsplitdc  6449  dif1en  6821  sbthlemi4  6901  fseq1p1m1  9991  resunimafz0  10697  setsvala  12208  metreslem  12767  xmspropd  12864  mspropd  12865  bj-charfundcALT  13371
  Copyright terms: Public domain W3C validator