| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq2d | Unicode version | ||
| Description: Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| reseqd.1 |
|
| Ref | Expression |
|---|---|
| reseq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqd.1 |
. 2
| |
| 2 | reseq2 4968 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-opab 4117 df-xp 4694 df-res 4700 |
| This theorem is referenced by: reseq12d 4974 resima2 5007 relresfld 5226 f1orescnv 5555 funcocnv2 5564 fococnv2 5565 fnressn 5788 oprssov 6106 dftpos2 6365 fnsnsplitdc 6609 dif1en 6997 sbthlemi4 7083 fseq1p1m1 10246 resunimafz0 11008 setsvala 12948 metreslem 14937 xmspropd 15034 mspropd 15035 bj-charfundcALT 15914 |
| Copyright terms: Public domain | W3C validator |