| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq12d | GIF version | ||
| Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| reseqd.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| reseq12d | ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | reseq1d 4980 | . 2 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| 3 | reseqd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | reseq2d 4981 | . 2 ⊢ (𝜑 → (𝐵 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| 5 | 2, 4 | eqtrd 2242 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ↾ cres 4698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-in 3183 df-opab 4125 df-xp 4702 df-res 4708 |
| This theorem is referenced by: tfrlem3ag 6425 tfrlem3a 6426 tfrlemi1 6448 tfr1onlem3ag 6453 setsvalg 13028 znval 14565 psrval 14595 isxms 15090 isms 15092 |
| Copyright terms: Public domain | W3C validator |