![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reuun1 | GIF version |
Description: Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005.) |
Ref | Expression |
---|---|
reuun1 | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴 ∪ 𝐵)(𝜑 ∨ 𝜓)) → ∃!𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3299 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
2 | orc 712 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
3 | 2 | rgenw 2532 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → (𝜑 ∨ 𝜓)) |
4 | reuss2 3416 | . 2 ⊢ (((𝐴 ⊆ (𝐴 ∪ 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝜑 → (𝜑 ∨ 𝜓))) ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴 ∪ 𝐵)(𝜑 ∨ 𝜓))) → ∃!𝑥 ∈ 𝐴 𝜑) | |
5 | 1, 3, 4 | mpanl12 436 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴 ∪ 𝐵)(𝜑 ∨ 𝜓)) → ∃!𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 708 ∀wral 2455 ∃wrex 2456 ∃!wreu 2457 ∪ cun 3128 ⊆ wss 3130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |