ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuun1 GIF version

Theorem reuun1 3418
Description: Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005.)
Assertion
Ref Expression
reuun1 ((∃𝑥𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴𝐵)(𝜑𝜓)) → ∃!𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem reuun1
StepHypRef Expression
1 ssun1 3299 . 2 𝐴 ⊆ (𝐴𝐵)
2 orc 712 . . 3 (𝜑 → (𝜑𝜓))
32rgenw 2532 . 2 𝑥𝐴 (𝜑 → (𝜑𝜓))
4 reuss2 3416 . 2 (((𝐴 ⊆ (𝐴𝐵) ∧ ∀𝑥𝐴 (𝜑 → (𝜑𝜓))) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴𝐵)(𝜑𝜓))) → ∃!𝑥𝐴 𝜑)
51, 3, 4mpanl12 436 1 ((∃𝑥𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴𝐵)(𝜑𝜓)) → ∃!𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708  wral 2455  wrex 2456  ∃!wreu 2457  cun 3128  wss 3130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-v 2740  df-un 3134  df-in 3136  df-ss 3143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator