![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reuun1 | GIF version |
Description: Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005.) |
Ref | Expression |
---|---|
reuun1 | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴 ∪ 𝐵)(𝜑 ∨ 𝜓)) → ∃!𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3163 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
2 | orc 668 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
3 | 2 | rgenw 2430 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → (𝜑 ∨ 𝜓)) |
4 | reuss2 3279 | . 2 ⊢ (((𝐴 ⊆ (𝐴 ∪ 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝜑 → (𝜑 ∨ 𝜓))) ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴 ∪ 𝐵)(𝜑 ∨ 𝜓))) → ∃!𝑥 ∈ 𝐴 𝜑) | |
5 | 1, 3, 4 | mpanl12 427 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴 ∪ 𝐵)(𝜑 ∨ 𝜓)) → ∃!𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∨ wo 664 ∀wral 2359 ∃wrex 2360 ∃!wreu 2361 ∪ cun 2997 ⊆ wss 2999 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-reu 2366 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |