Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rintm | Unicode version |
Description: Relative intersection of an inhabited class. (Contributed by Jim Kingdon, 19-Aug-2018.) |
Ref | Expression |
---|---|
rintm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3319 | . 2 | |
2 | intssuni2m 3855 | . . . 4 | |
3 | ssid 3167 | . . . . 5 | |
4 | sspwuni 3957 | . . . . 5 | |
5 | 3, 4 | mpbi 144 | . . . 4 |
6 | 2, 5 | sstrdi 3159 | . . 3 |
7 | df-ss 3134 | . . 3 | |
8 | 6, 7 | sylib 121 | . 2 |
9 | 1, 8 | eqtrid 2215 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wex 1485 wcel 2141 cin 3120 wss 3121 cpw 3566 cuni 3796 cint 3831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-uni 3797 df-int 3832 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |