Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rintm | Unicode version |
Description: Relative intersection of an inhabited class. (Contributed by Jim Kingdon, 19-Aug-2018.) |
Ref | Expression |
---|---|
rintm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3325 | . 2 | |
2 | intssuni2m 3864 | . . . 4 | |
3 | ssid 3173 | . . . . 5 | |
4 | sspwuni 3966 | . . . . 5 | |
5 | 3, 4 | mpbi 145 | . . . 4 |
6 | 2, 5 | sstrdi 3165 | . . 3 |
7 | df-ss 3140 | . . 3 | |
8 | 6, 7 | sylib 122 | . 2 |
9 | 1, 8 | eqtrid 2220 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 wex 1490 wcel 2146 cin 3126 wss 3127 cpw 3572 cuni 3805 cint 3840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-in 3133 df-ss 3140 df-pw 3574 df-uni 3806 df-int 3841 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |