ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rintm Unicode version

Theorem rintm 4020
Description: Relative intersection of an inhabited class. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
rintm  |-  ( ( X  C_  ~P A  /\  E. x  x  e.  X )  ->  ( A  i^i  |^| X )  = 
|^| X )
Distinct variable group:    x, X
Allowed substitution hint:    A( x)

Proof of Theorem rintm
StepHypRef Expression
1 incom 3365 . 2  |-  ( A  i^i  |^| X )  =  ( |^| X  i^i  A )
2 intssuni2m 3909 . . . 4  |-  ( ( X  C_  ~P A  /\  E. x  x  e.  X )  ->  |^| X  C_ 
U. ~P A )
3 ssid 3213 . . . . 5  |-  ~P A  C_ 
~P A
4 sspwuni 4012 . . . . 5  |-  ( ~P A  C_  ~P A  <->  U. ~P A  C_  A
)
53, 4mpbi 145 . . . 4  |-  U. ~P A  C_  A
62, 5sstrdi 3205 . . 3  |-  ( ( X  C_  ~P A  /\  E. x  x  e.  X )  ->  |^| X  C_  A )
7 df-ss 3179 . . 3  |-  ( |^| X  C_  A  <->  ( |^| X  i^i  A )  = 
|^| X )
86, 7sylib 122 . 2  |-  ( ( X  C_  ~P A  /\  E. x  x  e.  X )  ->  ( |^| X  i^i  A )  =  |^| X )
91, 8eqtrid 2250 1  |-  ( ( X  C_  ~P A  /\  E. x  x  e.  X )  ->  ( A  i^i  |^| X )  = 
|^| X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1515    e. wcel 2176    i^i cin 3165    C_ wss 3166   ~Pcpw 3616   U.cuni 3850   |^|cint 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618  df-uni 3851  df-int 3886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator