ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rintm GIF version

Theorem rintm 4006
Description: Relative intersection of an inhabited class. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
rintm ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥𝑋) → (𝐴 𝑋) = 𝑋)
Distinct variable group:   𝑥,𝑋
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem rintm
StepHypRef Expression
1 incom 3352 . 2 (𝐴 𝑋) = ( 𝑋𝐴)
2 intssuni2m 3895 . . . 4 ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥𝑋) → 𝑋 𝒫 𝐴)
3 ssid 3200 . . . . 5 𝒫 𝐴 ⊆ 𝒫 𝐴
4 sspwuni 3998 . . . . 5 (𝒫 𝐴 ⊆ 𝒫 𝐴 𝒫 𝐴𝐴)
53, 4mpbi 145 . . . 4 𝒫 𝐴𝐴
62, 5sstrdi 3192 . . 3 ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥𝑋) → 𝑋𝐴)
7 df-ss 3167 . . 3 ( 𝑋𝐴 ↔ ( 𝑋𝐴) = 𝑋)
86, 7sylib 122 . 2 ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥𝑋) → ( 𝑋𝐴) = 𝑋)
91, 8eqtrid 2238 1 ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥𝑋) → (𝐴 𝑋) = 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1503  wcel 2164  cin 3153  wss 3154  𝒫 cpw 3602   cuni 3836   cint 3871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3160  df-ss 3167  df-pw 3604  df-uni 3837  df-int 3872
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator