ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rintm GIF version

Theorem rintm 3965
Description: Relative intersection of an inhabited class. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
rintm ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥𝑋) → (𝐴 𝑋) = 𝑋)
Distinct variable group:   𝑥,𝑋
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem rintm
StepHypRef Expression
1 incom 3319 . 2 (𝐴 𝑋) = ( 𝑋𝐴)
2 intssuni2m 3855 . . . 4 ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥𝑋) → 𝑋 𝒫 𝐴)
3 ssid 3167 . . . . 5 𝒫 𝐴 ⊆ 𝒫 𝐴
4 sspwuni 3957 . . . . 5 (𝒫 𝐴 ⊆ 𝒫 𝐴 𝒫 𝐴𝐴)
53, 4mpbi 144 . . . 4 𝒫 𝐴𝐴
62, 5sstrdi 3159 . . 3 ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥𝑋) → 𝑋𝐴)
7 df-ss 3134 . . 3 ( 𝑋𝐴 ↔ ( 𝑋𝐴) = 𝑋)
86, 7sylib 121 . 2 ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥𝑋) → ( 𝑋𝐴) = 𝑋)
91, 8eqtrid 2215 1 ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥𝑋) → (𝐴 𝑋) = 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wex 1485  wcel 2141  cin 3120  wss 3121  𝒫 cpw 3566   cuni 3796   cint 3831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-uni 3797  df-int 3832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator