ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rintm GIF version

Theorem rintm 4019
Description: Relative intersection of an inhabited class. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
rintm ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥𝑋) → (𝐴 𝑋) = 𝑋)
Distinct variable group:   𝑥,𝑋
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem rintm
StepHypRef Expression
1 incom 3364 . 2 (𝐴 𝑋) = ( 𝑋𝐴)
2 intssuni2m 3908 . . . 4 ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥𝑋) → 𝑋 𝒫 𝐴)
3 ssid 3212 . . . . 5 𝒫 𝐴 ⊆ 𝒫 𝐴
4 sspwuni 4011 . . . . 5 (𝒫 𝐴 ⊆ 𝒫 𝐴 𝒫 𝐴𝐴)
53, 4mpbi 145 . . . 4 𝒫 𝐴𝐴
62, 5sstrdi 3204 . . 3 ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥𝑋) → 𝑋𝐴)
7 df-ss 3178 . . 3 ( 𝑋𝐴 ↔ ( 𝑋𝐴) = 𝑋)
86, 7sylib 122 . 2 ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥𝑋) → ( 𝑋𝐴) = 𝑋)
91, 8eqtrid 2249 1 ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥𝑋) → (𝐴 𝑋) = 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wex 1514  wcel 2175  cin 3164  wss 3165  𝒫 cpw 3615   cuni 3849   cint 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-in 3171  df-ss 3178  df-pw 3617  df-uni 3850  df-int 3885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator