![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rintm | GIF version |
Description: Relative intersection of an inhabited class. (Contributed by Jim Kingdon, 19-Aug-2018.) |
Ref | Expression |
---|---|
rintm | ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3351 | . 2 ⊢ (𝐴 ∩ ∩ 𝑋) = (∩ 𝑋 ∩ 𝐴) | |
2 | intssuni2m 3894 | . . . 4 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → ∩ 𝑋 ⊆ ∪ 𝒫 𝐴) | |
3 | ssid 3199 | . . . . 5 ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐴 | |
4 | sspwuni 3997 | . . . . 5 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐴 ↔ ∪ 𝒫 𝐴 ⊆ 𝐴) | |
5 | 3, 4 | mpbi 145 | . . . 4 ⊢ ∪ 𝒫 𝐴 ⊆ 𝐴 |
6 | 2, 5 | sstrdi 3191 | . . 3 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → ∩ 𝑋 ⊆ 𝐴) |
7 | df-ss 3166 | . . 3 ⊢ (∩ 𝑋 ⊆ 𝐴 ↔ (∩ 𝑋 ∩ 𝐴) = ∩ 𝑋) | |
8 | 6, 7 | sylib 122 | . 2 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → (∩ 𝑋 ∩ 𝐴) = ∩ 𝑋) |
9 | 1, 8 | eqtrid 2238 | 1 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∩ cin 3152 ⊆ wss 3153 𝒫 cpw 3601 ∪ cuni 3835 ∩ cint 3870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-in 3159 df-ss 3166 df-pw 3603 df-uni 3836 df-int 3871 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |