| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rintm | GIF version | ||
| Description: Relative intersection of an inhabited class. (Contributed by Jim Kingdon, 19-Aug-2018.) | 
| Ref | Expression | 
|---|---|
| rintm | ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | incom 3355 | . 2 ⊢ (𝐴 ∩ ∩ 𝑋) = (∩ 𝑋 ∩ 𝐴) | |
| 2 | intssuni2m 3898 | . . . 4 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → ∩ 𝑋 ⊆ ∪ 𝒫 𝐴) | |
| 3 | ssid 3203 | . . . . 5 ⊢ 𝒫 𝐴 ⊆ 𝒫 𝐴 | |
| 4 | sspwuni 4001 | . . . . 5 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐴 ↔ ∪ 𝒫 𝐴 ⊆ 𝐴) | |
| 5 | 3, 4 | mpbi 145 | . . . 4 ⊢ ∪ 𝒫 𝐴 ⊆ 𝐴 | 
| 6 | 2, 5 | sstrdi 3195 | . . 3 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → ∩ 𝑋 ⊆ 𝐴) | 
| 7 | df-ss 3170 | . . 3 ⊢ (∩ 𝑋 ⊆ 𝐴 ↔ (∩ 𝑋 ∩ 𝐴) = ∩ 𝑋) | |
| 8 | 6, 7 | sylib 122 | . 2 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → (∩ 𝑋 ∩ 𝐴) = ∩ 𝑋) | 
| 9 | 1, 8 | eqtrid 2241 | 1 ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝑋) → (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ∩ cin 3156 ⊆ wss 3157 𝒫 cpw 3605 ∪ cuni 3839 ∩ cint 3874 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 df-uni 3840 df-int 3875 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |