ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunpwss Unicode version

Theorem iunpwss 4057
Description: Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
iunpwss  |-  U_ x  e.  A  ~P x  C_ 
~P U. A
Distinct variable group:    x, A

Proof of Theorem iunpwss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssiun 4007 . . 3  |-  ( E. x  e.  A  y 
C_  x  ->  y  C_ 
U_ x  e.  A  x )
2 eliun 3969 . . . 4  |-  ( y  e.  U_ x  e.  A  ~P x  <->  E. x  e.  A  y  e.  ~P x )
3 vex 2802 . . . . . 6  |-  y  e. 
_V
43elpw 3655 . . . . 5  |-  ( y  e.  ~P x  <->  y  C_  x )
54rexbii 2537 . . . 4  |-  ( E. x  e.  A  y  e.  ~P x  <->  E. x  e.  A  y  C_  x )
62, 5bitri 184 . . 3  |-  ( y  e.  U_ x  e.  A  ~P x  <->  E. x  e.  A  y  C_  x )
73elpw 3655 . . . 4  |-  ( y  e.  ~P U. A  <->  y 
C_  U. A )
8 uniiun 4019 . . . . 5  |-  U. A  =  U_ x  e.  A  x
98sseq2i 3251 . . . 4  |-  ( y 
C_  U. A  <->  y  C_  U_ x  e.  A  x )
107, 9bitri 184 . . 3  |-  ( y  e.  ~P U. A  <->  y 
C_  U_ x  e.  A  x )
111, 6, 103imtr4i 201 . 2  |-  ( y  e.  U_ x  e.  A  ~P x  -> 
y  e.  ~P U. A )
1211ssriv 3228 1  |-  U_ x  e.  A  ~P x  C_ 
~P U. A
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   E.wrex 2509    C_ wss 3197   ~Pcpw 3649   U.cuni 3888   U_ciun 3965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-uni 3889  df-iun 3967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator