ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunpwss Unicode version

Theorem iunpwss 4019
Description: Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
iunpwss  |-  U_ x  e.  A  ~P x  C_ 
~P U. A
Distinct variable group:    x, A

Proof of Theorem iunpwss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssiun 3969 . . 3  |-  ( E. x  e.  A  y 
C_  x  ->  y  C_ 
U_ x  e.  A  x )
2 eliun 3931 . . . 4  |-  ( y  e.  U_ x  e.  A  ~P x  <->  E. x  e.  A  y  e.  ~P x )
3 vex 2775 . . . . . 6  |-  y  e. 
_V
43elpw 3622 . . . . 5  |-  ( y  e.  ~P x  <->  y  C_  x )
54rexbii 2513 . . . 4  |-  ( E. x  e.  A  y  e.  ~P x  <->  E. x  e.  A  y  C_  x )
62, 5bitri 184 . . 3  |-  ( y  e.  U_ x  e.  A  ~P x  <->  E. x  e.  A  y  C_  x )
73elpw 3622 . . . 4  |-  ( y  e.  ~P U. A  <->  y 
C_  U. A )
8 uniiun 3981 . . . . 5  |-  U. A  =  U_ x  e.  A  x
98sseq2i 3220 . . . 4  |-  ( y 
C_  U. A  <->  y  C_  U_ x  e.  A  x )
107, 9bitri 184 . . 3  |-  ( y  e.  ~P U. A  <->  y 
C_  U_ x  e.  A  x )
111, 6, 103imtr4i 201 . 2  |-  ( y  e.  U_ x  e.  A  ~P x  -> 
y  e.  ~P U. A )
1211ssriv 3197 1  |-  U_ x  e.  A  ~P x  C_ 
~P U. A
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   E.wrex 2485    C_ wss 3166   ~Pcpw 3616   U.cuni 3850   U_ciun 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618  df-uni 3851  df-iun 3929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator