ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunpwss Unicode version

Theorem iunpwss 3964
Description: Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
iunpwss  |-  U_ x  e.  A  ~P x  C_ 
~P U. A
Distinct variable group:    x, A

Proof of Theorem iunpwss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssiun 3915 . . 3  |-  ( E. x  e.  A  y 
C_  x  ->  y  C_ 
U_ x  e.  A  x )
2 eliun 3877 . . . 4  |-  ( y  e.  U_ x  e.  A  ~P x  <->  E. x  e.  A  y  e.  ~P x )
3 vex 2733 . . . . . 6  |-  y  e. 
_V
43elpw 3572 . . . . 5  |-  ( y  e.  ~P x  <->  y  C_  x )
54rexbii 2477 . . . 4  |-  ( E. x  e.  A  y  e.  ~P x  <->  E. x  e.  A  y  C_  x )
62, 5bitri 183 . . 3  |-  ( y  e.  U_ x  e.  A  ~P x  <->  E. x  e.  A  y  C_  x )
73elpw 3572 . . . 4  |-  ( y  e.  ~P U. A  <->  y 
C_  U. A )
8 uniiun 3926 . . . . 5  |-  U. A  =  U_ x  e.  A  x
98sseq2i 3174 . . . 4  |-  ( y 
C_  U. A  <->  y  C_  U_ x  e.  A  x )
107, 9bitri 183 . . 3  |-  ( y  e.  ~P U. A  <->  y 
C_  U_ x  e.  A  x )
111, 6, 103imtr4i 200 . 2  |-  ( y  e.  U_ x  e.  A  ~P x  -> 
y  e.  ~P U. A )
1211ssriv 3151 1  |-  U_ x  e.  A  ~P x  C_ 
~P U. A
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   E.wrex 2449    C_ wss 3121   ~Pcpw 3566   U.cuni 3796   U_ciun 3873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-uni 3797  df-iun 3875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator