ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunpwss Unicode version

Theorem iunpwss 3957
Description: Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
iunpwss  |-  U_ x  e.  A  ~P x  C_ 
~P U. A
Distinct variable group:    x, A

Proof of Theorem iunpwss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssiun 3908 . . 3  |-  ( E. x  e.  A  y 
C_  x  ->  y  C_ 
U_ x  e.  A  x )
2 eliun 3870 . . . 4  |-  ( y  e.  U_ x  e.  A  ~P x  <->  E. x  e.  A  y  e.  ~P x )
3 vex 2729 . . . . . 6  |-  y  e. 
_V
43elpw 3565 . . . . 5  |-  ( y  e.  ~P x  <->  y  C_  x )
54rexbii 2473 . . . 4  |-  ( E. x  e.  A  y  e.  ~P x  <->  E. x  e.  A  y  C_  x )
62, 5bitri 183 . . 3  |-  ( y  e.  U_ x  e.  A  ~P x  <->  E. x  e.  A  y  C_  x )
73elpw 3565 . . . 4  |-  ( y  e.  ~P U. A  <->  y 
C_  U. A )
8 uniiun 3919 . . . . 5  |-  U. A  =  U_ x  e.  A  x
98sseq2i 3169 . . . 4  |-  ( y 
C_  U. A  <->  y  C_  U_ x  e.  A  x )
107, 9bitri 183 . . 3  |-  ( y  e.  ~P U. A  <->  y 
C_  U_ x  e.  A  x )
111, 6, 103imtr4i 200 . 2  |-  ( y  e.  U_ x  e.  A  ~P x  -> 
y  e.  ~P U. A )
1211ssriv 3146 1  |-  U_ x  e.  A  ~P x  C_ 
~P U. A
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   E.wrex 2445    C_ wss 3116   ~Pcpw 3559   U.cuni 3789   U_ciun 3866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-uni 3790  df-iun 3868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator