ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oppr1g Unicode version

Theorem oppr1g 13844
Description: Multiplicative identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprbas.1  |-  O  =  (oppr
`  R )
oppr1.2  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
oppr1g  |-  ( R  e.  V  ->  .1.  =  ( 1r `  O ) )

Proof of Theorem oppr1g
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2205 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
2 eqid 2205 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
3 opprbas.1 . . . . . . . . . . 11  |-  O  =  (oppr
`  R )
4 eqid 2205 . . . . . . . . . . 11  |-  ( .r
`  O )  =  ( .r `  O
)
51, 2, 3, 4opprmulg 13833 . . . . . . . . . 10  |-  ( ( R  e.  V  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  ->  (
x ( .r `  O ) y )  =  ( y ( .r `  R ) x ) )
653expa 1206 . . . . . . . . 9  |-  ( ( ( R  e.  V  /\  x  e.  ( Base `  R ) )  /\  y  e.  (
Base `  R )
)  ->  ( x
( .r `  O
) y )  =  ( y ( .r
`  R ) x ) )
76eqeq1d 2214 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  x  e.  ( Base `  R ) )  /\  y  e.  (
Base `  R )
)  ->  ( (
x ( .r `  O ) y )  =  y  <->  ( y
( .r `  R
) x )  =  y ) )
8 simpll 527 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  x  e.  ( Base `  R ) )  /\  y  e.  (
Base `  R )
)  ->  R  e.  V )
9 simpr 110 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  x  e.  ( Base `  R ) )  /\  y  e.  (
Base `  R )
)  ->  y  e.  ( Base `  R )
)
10 simplr 528 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  x  e.  ( Base `  R ) )  /\  y  e.  (
Base `  R )
)  ->  x  e.  ( Base `  R )
)
111, 2, 3, 4opprmulg 13833 . . . . . . . . . 10  |-  ( ( R  e.  V  /\  y  e.  ( Base `  R )  /\  x  e.  ( Base `  R
) )  ->  (
y ( .r `  O ) x )  =  ( x ( .r `  R ) y ) )
128, 9, 10, 11syl3anc 1250 . . . . . . . . 9  |-  ( ( ( R  e.  V  /\  x  e.  ( Base `  R ) )  /\  y  e.  (
Base `  R )
)  ->  ( y
( .r `  O
) x )  =  ( x ( .r
`  R ) y ) )
1312eqeq1d 2214 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  x  e.  ( Base `  R ) )  /\  y  e.  (
Base `  R )
)  ->  ( (
y ( .r `  O ) x )  =  y  <->  ( x
( .r `  R
) y )  =  y ) )
147, 13anbi12d 473 . . . . . . 7  |-  ( ( ( R  e.  V  /\  x  e.  ( Base `  R ) )  /\  y  e.  (
Base `  R )
)  ->  ( (
( x ( .r
`  O ) y )  =  y  /\  ( y ( .r
`  O ) x )  =  y )  <-> 
( ( y ( .r `  R ) x )  =  y  /\  ( x ( .r `  R ) y )  =  y ) ) )
1514biancomd 271 . . . . . 6  |-  ( ( ( R  e.  V  /\  x  e.  ( Base `  R ) )  /\  y  e.  (
Base `  R )
)  ->  ( (
( x ( .r
`  O ) y )  =  y  /\  ( y ( .r
`  O ) x )  =  y )  <-> 
( ( x ( .r `  R ) y )  =  y  /\  ( y ( .r `  R ) x )  =  y ) ) )
1615ralbidva 2502 . . . . 5  |-  ( ( R  e.  V  /\  x  e.  ( Base `  R ) )  -> 
( A. y  e.  ( Base `  R
) ( ( x ( .r `  O
) y )  =  y  /\  ( y ( .r `  O
) x )  =  y )  <->  A. y  e.  ( Base `  R
) ( ( x ( .r `  R
) y )  =  y  /\  ( y ( .r `  R
) x )  =  y ) ) )
1716riotabidva 5916 . . . 4  |-  ( R  e.  V  ->  ( iota_ x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) ( ( x ( .r `  O
) y )  =  y  /\  ( y ( .r `  O
) x )  =  y ) )  =  ( iota_ x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) ( ( x ( .r
`  R ) y )  =  y  /\  ( y ( .r
`  R ) x )  =  y ) ) )
18 df-riota 5899 . . . 4  |-  ( iota_ x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( ( x ( .r `  O
) y )  =  y  /\  ( y ( .r `  O
) x )  =  y ) )  =  ( iota x ( x  e.  ( Base `  R )  /\  A. y  e.  ( Base `  R ) ( ( x ( .r `  O ) y )  =  y  /\  (
y ( .r `  O ) x )  =  y ) ) )
19 df-riota 5899 . . . 4  |-  ( iota_ x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( ( x ( .r `  R
) y )  =  y  /\  ( y ( .r `  R
) x )  =  y ) )  =  ( iota x ( x  e.  ( Base `  R )  /\  A. y  e.  ( Base `  R ) ( ( x ( .r `  R ) y )  =  y  /\  (
y ( .r `  R ) x )  =  y ) ) )
2017, 18, 193eqtr3g 2261 . . 3  |-  ( R  e.  V  ->  ( iota x ( x  e.  ( Base `  R
)  /\  A. y  e.  ( Base `  R
) ( ( x ( .r `  O
) y )  =  y  /\  ( y ( .r `  O
) x )  =  y ) ) )  =  ( iota x
( x  e.  (
Base `  R )  /\  A. y  e.  (
Base `  R )
( ( x ( .r `  R ) y )  =  y  /\  ( y ( .r `  R ) x )  =  y ) ) ) )
213opprex 13835 . . . . 5  |-  ( R  e.  V  ->  O  e.  _V )
22 eqid 2205 . . . . . 6  |-  (mulGrp `  O )  =  (mulGrp `  O )
2322mgpex 13687 . . . . 5  |-  ( O  e.  _V  ->  (mulGrp `  O )  e.  _V )
24 eqid 2205 . . . . . 6  |-  ( Base `  (mulGrp `  O )
)  =  ( Base `  (mulGrp `  O )
)
25 eqid 2205 . . . . . 6  |-  ( +g  `  (mulGrp `  O )
)  =  ( +g  `  (mulGrp `  O )
)
26 eqid 2205 . . . . . 6  |-  ( 0g
`  (mulGrp `  O )
)  =  ( 0g
`  (mulGrp `  O )
)
2724, 25, 26grpidvalg 13205 . . . . 5  |-  ( (mulGrp `  O )  e.  _V  ->  ( 0g `  (mulGrp `  O ) )  =  ( iota x ( x  e.  ( Base `  (mulGrp `  O )
)  /\  A. y  e.  ( Base `  (mulGrp `  O ) ) ( ( x ( +g  `  (mulGrp `  O )
) y )  =  y  /\  ( y ( +g  `  (mulGrp `  O ) ) x )  =  y ) ) ) )
2821, 23, 273syl 17 . . . 4  |-  ( R  e.  V  ->  ( 0g `  (mulGrp `  O
) )  =  ( iota x ( x  e.  ( Base `  (mulGrp `  O ) )  /\  A. y  e.  ( Base `  (mulGrp `  O )
) ( ( x ( +g  `  (mulGrp `  O ) ) y )  =  y  /\  ( y ( +g  `  (mulGrp `  O )
) x )  =  y ) ) ) )
293, 1opprbasg 13837 . . . . . . . 8  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  O
) )
30 eqid 2205 . . . . . . . . . 10  |-  ( Base `  O )  =  (
Base `  O )
3122, 30mgpbasg 13688 . . . . . . . . 9  |-  ( O  e.  _V  ->  ( Base `  O )  =  ( Base `  (mulGrp `  O ) ) )
3221, 31syl 14 . . . . . . . 8  |-  ( R  e.  V  ->  ( Base `  O )  =  ( Base `  (mulGrp `  O ) ) )
3329, 32eqtrd 2238 . . . . . . 7  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  (mulGrp `  O ) ) )
3433eleq2d 2275 . . . . . 6  |-  ( R  e.  V  ->  (
x  e.  ( Base `  R )  <->  x  e.  ( Base `  (mulGrp `  O
) ) ) )
3522, 4mgpplusgg 13686 . . . . . . . . . . 11  |-  ( O  e.  _V  ->  ( .r `  O )  =  ( +g  `  (mulGrp `  O ) ) )
3621, 35syl 14 . . . . . . . . . 10  |-  ( R  e.  V  ->  ( .r `  O )  =  ( +g  `  (mulGrp `  O ) ) )
3736oveqd 5961 . . . . . . . . 9  |-  ( R  e.  V  ->  (
x ( .r `  O ) y )  =  ( x ( +g  `  (mulGrp `  O ) ) y ) )
3837eqeq1d 2214 . . . . . . . 8  |-  ( R  e.  V  ->  (
( x ( .r
`  O ) y )  =  y  <->  ( x
( +g  `  (mulGrp `  O ) ) y )  =  y ) )
3936oveqd 5961 . . . . . . . . 9  |-  ( R  e.  V  ->  (
y ( .r `  O ) x )  =  ( y ( +g  `  (mulGrp `  O ) ) x ) )
4039eqeq1d 2214 . . . . . . . 8  |-  ( R  e.  V  ->  (
( y ( .r
`  O ) x )  =  y  <->  ( y
( +g  `  (mulGrp `  O ) ) x )  =  y ) )
4138, 40anbi12d 473 . . . . . . 7  |-  ( R  e.  V  ->  (
( ( x ( .r `  O ) y )  =  y  /\  ( y ( .r `  O ) x )  =  y )  <->  ( ( x ( +g  `  (mulGrp `  O ) ) y )  =  y  /\  ( y ( +g  `  (mulGrp `  O )
) x )  =  y ) ) )
4233, 41raleqbidv 2718 . . . . . 6  |-  ( R  e.  V  ->  ( A. y  e.  ( Base `  R ) ( ( x ( .r
`  O ) y )  =  y  /\  ( y ( .r
`  O ) x )  =  y )  <->  A. y  e.  ( Base `  (mulGrp `  O
) ) ( ( x ( +g  `  (mulGrp `  O ) ) y )  =  y  /\  ( y ( +g  `  (mulGrp `  O )
) x )  =  y ) ) )
4334, 42anbi12d 473 . . . . 5  |-  ( R  e.  V  ->  (
( x  e.  (
Base `  R )  /\  A. y  e.  (
Base `  R )
( ( x ( .r `  O ) y )  =  y  /\  ( y ( .r `  O ) x )  =  y ) )  <->  ( x  e.  ( Base `  (mulGrp `  O ) )  /\  A. y  e.  ( Base `  (mulGrp `  O )
) ( ( x ( +g  `  (mulGrp `  O ) ) y )  =  y  /\  ( y ( +g  `  (mulGrp `  O )
) x )  =  y ) ) ) )
4443iotabidv 5254 . . . 4  |-  ( R  e.  V  ->  ( iota x ( x  e.  ( Base `  R
)  /\  A. y  e.  ( Base `  R
) ( ( x ( .r `  O
) y )  =  y  /\  ( y ( .r `  O
) x )  =  y ) ) )  =  ( iota x
( x  e.  (
Base `  (mulGrp `  O
) )  /\  A. y  e.  ( Base `  (mulGrp `  O )
) ( ( x ( +g  `  (mulGrp `  O ) ) y )  =  y  /\  ( y ( +g  `  (mulGrp `  O )
) x )  =  y ) ) ) )
4528, 44eqtr4d 2241 . . 3  |-  ( R  e.  V  ->  ( 0g `  (mulGrp `  O
) )  =  ( iota x ( x  e.  ( Base `  R
)  /\  A. y  e.  ( Base `  R
) ( ( x ( .r `  O
) y )  =  y  /\  ( y ( .r `  O
) x )  =  y ) ) ) )
46 eqid 2205 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
4746mgpex 13687 . . . . 5  |-  ( R  e.  V  ->  (mulGrp `  R )  e.  _V )
48 eqid 2205 . . . . . 6  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
49 eqid 2205 . . . . . 6  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
50 eqid 2205 . . . . . 6  |-  ( 0g
`  (mulGrp `  R )
)  =  ( 0g
`  (mulGrp `  R )
)
5148, 49, 50grpidvalg 13205 . . . . 5  |-  ( (mulGrp `  R )  e.  _V  ->  ( 0g `  (mulGrp `  R ) )  =  ( iota x ( x  e.  ( Base `  (mulGrp `  R )
)  /\  A. y  e.  ( Base `  (mulGrp `  R ) ) ( ( x ( +g  `  (mulGrp `  R )
) y )  =  y  /\  ( y ( +g  `  (mulGrp `  R ) ) x )  =  y ) ) ) )
5247, 51syl 14 . . . 4  |-  ( R  e.  V  ->  ( 0g `  (mulGrp `  R
) )  =  ( iota x ( x  e.  ( Base `  (mulGrp `  R ) )  /\  A. y  e.  ( Base `  (mulGrp `  R )
) ( ( x ( +g  `  (mulGrp `  R ) ) y )  =  y  /\  ( y ( +g  `  (mulGrp `  R )
) x )  =  y ) ) ) )
5346, 1mgpbasg 13688 . . . . . . 7  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  (mulGrp `  R ) ) )
5453eleq2d 2275 . . . . . 6  |-  ( R  e.  V  ->  (
x  e.  ( Base `  R )  <->  x  e.  ( Base `  (mulGrp `  R
) ) ) )
5546, 2mgpplusgg 13686 . . . . . . . . . 10  |-  ( R  e.  V  ->  ( .r `  R )  =  ( +g  `  (mulGrp `  R ) ) )
5655oveqd 5961 . . . . . . . . 9  |-  ( R  e.  V  ->  (
x ( .r `  R ) y )  =  ( x ( +g  `  (mulGrp `  R ) ) y ) )
5756eqeq1d 2214 . . . . . . . 8  |-  ( R  e.  V  ->  (
( x ( .r
`  R ) y )  =  y  <->  ( x
( +g  `  (mulGrp `  R ) ) y )  =  y ) )
5855oveqd 5961 . . . . . . . . 9  |-  ( R  e.  V  ->  (
y ( .r `  R ) x )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) )
5958eqeq1d 2214 . . . . . . . 8  |-  ( R  e.  V  ->  (
( y ( .r
`  R ) x )  =  y  <->  ( y
( +g  `  (mulGrp `  R ) ) x )  =  y ) )
6057, 59anbi12d 473 . . . . . . 7  |-  ( R  e.  V  ->  (
( ( x ( .r `  R ) y )  =  y  /\  ( y ( .r `  R ) x )  =  y )  <->  ( ( x ( +g  `  (mulGrp `  R ) ) y )  =  y  /\  ( y ( +g  `  (mulGrp `  R )
) x )  =  y ) ) )
6153, 60raleqbidv 2718 . . . . . 6  |-  ( R  e.  V  ->  ( A. y  e.  ( Base `  R ) ( ( x ( .r
`  R ) y )  =  y  /\  ( y ( .r
`  R ) x )  =  y )  <->  A. y  e.  ( Base `  (mulGrp `  R
) ) ( ( x ( +g  `  (mulGrp `  R ) ) y )  =  y  /\  ( y ( +g  `  (mulGrp `  R )
) x )  =  y ) ) )
6254, 61anbi12d 473 . . . . 5  |-  ( R  e.  V  ->  (
( x  e.  (
Base `  R )  /\  A. y  e.  (
Base `  R )
( ( x ( .r `  R ) y )  =  y  /\  ( y ( .r `  R ) x )  =  y ) )  <->  ( x  e.  ( Base `  (mulGrp `  R ) )  /\  A. y  e.  ( Base `  (mulGrp `  R )
) ( ( x ( +g  `  (mulGrp `  R ) ) y )  =  y  /\  ( y ( +g  `  (mulGrp `  R )
) x )  =  y ) ) ) )
6362iotabidv 5254 . . . 4  |-  ( R  e.  V  ->  ( iota x ( x  e.  ( Base `  R
)  /\  A. y  e.  ( Base `  R
) ( ( x ( .r `  R
) y )  =  y  /\  ( y ( .r `  R
) x )  =  y ) ) )  =  ( iota x
( x  e.  (
Base `  (mulGrp `  R
) )  /\  A. y  e.  ( Base `  (mulGrp `  R )
) ( ( x ( +g  `  (mulGrp `  R ) ) y )  =  y  /\  ( y ( +g  `  (mulGrp `  R )
) x )  =  y ) ) ) )
6452, 63eqtr4d 2241 . . 3  |-  ( R  e.  V  ->  ( 0g `  (mulGrp `  R
) )  =  ( iota x ( x  e.  ( Base `  R
)  /\  A. y  e.  ( Base `  R
) ( ( x ( .r `  R
) y )  =  y  /\  ( y ( .r `  R
) x )  =  y ) ) ) )
6520, 45, 643eqtr4d 2248 . 2  |-  ( R  e.  V  ->  ( 0g `  (mulGrp `  O
) )  =  ( 0g `  (mulGrp `  R ) ) )
66 eqid 2205 . . . 4  |-  ( 1r
`  O )  =  ( 1r `  O
)
6722, 66ringidvalg 13723 . . 3  |-  ( O  e.  _V  ->  ( 1r `  O )  =  ( 0g `  (mulGrp `  O ) ) )
6821, 67syl 14 . 2  |-  ( R  e.  V  ->  ( 1r `  O )  =  ( 0g `  (mulGrp `  O ) ) )
69 oppr1.2 . . 3  |-  .1.  =  ( 1r `  R )
7046, 69ringidvalg 13723 . 2  |-  ( R  e.  V  ->  .1.  =  ( 0g `  (mulGrp `  R ) ) )
7165, 68, 703eqtr4rd 2249 1  |-  ( R  e.  V  ->  .1.  =  ( 1r `  O ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772   iotacio 5230   ` cfv 5271   iota_crio 5898  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   .rcmulr 12910   0gc0g 13088  mulGrpcmgp 13682   1rcur 13721  opprcoppr 13829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-tpos 6331  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgp 13683  df-ur 13722  df-oppr 13830
This theorem is referenced by:  opprunitd  13872  rhmopp  13938  opprnzrbg  13947
  Copyright terms: Public domain W3C validator