ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpcn Unicode version

Theorem rpcn 9598
Description: A positive real is a complex number. (Contributed by NM, 11-Nov-2008.)
Assertion
Ref Expression
rpcn  |-  ( A  e.  RR+  ->  A  e.  CC )

Proof of Theorem rpcn
StepHypRef Expression
1 rpre 9596 . 2  |-  ( A  e.  RR+  ->  A  e.  RR )
21recnd 7927 1  |-  ( A  e.  RR+  ->  A  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   CCcc 7751   RR+crp 9589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-in 3122  df-ss 3129  df-rp 9590
This theorem is referenced by:  rpcnne0  9609  rpcnap0  9610  divge1  9659  sqrtdiv  10984  efgt1p2  11636  efgt1p  11637  pilem1  13340  rpcxp0  13459  rpcxp1  13460  cxprec  13471  rplogbval  13503  rprelogbdiv  13515
  Copyright terms: Public domain W3C validator