Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpcn | Unicode version |
Description: A positive real is a complex number. (Contributed by NM, 11-Nov-2008.) |
Ref | Expression |
---|---|
rpcn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 9629 | . 2 | |
2 | 1 | recnd 7960 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2146 cc 7784 crp 9622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-resscn 7878 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rab 2462 df-in 3133 df-ss 3140 df-rp 9623 |
This theorem is referenced by: rpcnne0 9642 rpcnap0 9643 divge1 9692 sqrtdiv 11017 efgt1p2 11669 efgt1p 11670 pilem1 13769 rpcxp0 13888 rpcxp1 13889 cxprec 13900 rplogbval 13932 rprelogbdiv 13944 |
Copyright terms: Public domain | W3C validator |