Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpcn | Unicode version |
Description: A positive real is a complex number. (Contributed by NM, 11-Nov-2008.) |
Ref | Expression |
---|---|
rpcn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 9596 | . 2 | |
2 | 1 | recnd 7927 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 cc 7751 crp 9589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-in 3122 df-ss 3129 df-rp 9590 |
This theorem is referenced by: rpcnne0 9609 rpcnap0 9610 divge1 9659 sqrtdiv 10984 efgt1p2 11636 efgt1p 11637 pilem1 13340 rpcxp0 13459 rpcxp1 13460 cxprec 13471 rplogbval 13503 rprelogbdiv 13515 |
Copyright terms: Public domain | W3C validator |