| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpcn | Unicode version | ||
| Description: A positive real is a complex number. (Contributed by NM, 11-Nov-2008.) |
| Ref | Expression |
|---|---|
| rpcn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 9781 |
. 2
| |
| 2 | 1 | recnd 8100 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 8016 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rab 2492 df-in 3171 df-ss 3178 df-rp 9775 |
| This theorem is referenced by: rpcnne0 9794 rpcnap0 9795 divge1 9844 sqrtdiv 11324 efgt1p2 11977 efgt1p 11978 pilem1 15222 rpcxp0 15341 rpcxp1 15342 cxprec 15353 rplogbval 15388 rprelogbdiv 15400 |
| Copyright terms: Public domain | W3C validator |