ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rprelogbdiv Unicode version

Theorem rprelogbdiv 13234
Description: The logarithm of the quotient of two positive real numbers is the difference of logarithms. Property 3 of [Cohen4] p. 361. (Contributed by AV, 29-May-2020.)
Assertion
Ref Expression
rprelogbdiv  |-  ( ( ( B  e.  RR+  /\  B #  1 )  /\  ( A  e.  RR+  /\  C  e.  RR+ ) )  -> 
( B logb  ( A  /  C ) )  =  ( ( B logb  A )  -  ( B logb  C ) ) )

Proof of Theorem rprelogbdiv
StepHypRef Expression
1 neg1rr 8922 . . 3  |-  -u 1  e.  RR
2 rprelogbmulexp 13233 . . 3  |-  ( ( ( B  e.  RR+  /\  B #  1 )  /\  ( A  e.  RR+  /\  C  e.  RR+  /\  -u 1  e.  RR ) )  -> 
( B logb  ( A  x.  ( C  ^c  -u 1 ) ) )  =  ( ( B logb  A )  +  ( -u
1  x.  ( B logb  C ) ) ) )
31, 2mp3anr3 1318 . 2  |-  ( ( ( B  e.  RR+  /\  B #  1 )  /\  ( A  e.  RR+  /\  C  e.  RR+ ) )  -> 
( B logb  ( A  x.  ( C  ^c  -u 1 ) ) )  =  ( ( B logb  A )  +  ( -u
1  x.  ( B logb  C ) ) ) )
4 rpcn 9551 . . . . . . 7  |-  ( A  e.  RR+  ->  A  e.  CC )
54adantr 274 . . . . . 6  |-  ( ( A  e.  RR+  /\  C  e.  RR+ )  ->  A  e.  CC )
6 rpcn 9551 . . . . . . 7  |-  ( C  e.  RR+  ->  C  e.  CC )
76adantl 275 . . . . . 6  |-  ( ( A  e.  RR+  /\  C  e.  RR+ )  ->  C  e.  CC )
8 rpap0 9559 . . . . . . 7  |-  ( C  e.  RR+  ->  C #  0 )
98adantl 275 . . . . . 6  |-  ( ( A  e.  RR+  /\  C  e.  RR+ )  ->  C #  0 )
105, 7, 9divrecapd 8649 . . . . 5  |-  ( ( A  e.  RR+  /\  C  e.  RR+ )  ->  ( A  /  C )  =  ( A  x.  (
1  /  C ) ) )
11 ax-1cn 7808 . . . . . . . . 9  |-  1  e.  CC
12 rpcxpneg 13188 . . . . . . . . 9  |-  ( ( C  e.  RR+  /\  1  e.  CC )  ->  ( C  ^c  -u 1
)  =  ( 1  /  ( C  ^c  1 ) ) )
1311, 12mpan2 422 . . . . . . . 8  |-  ( C  e.  RR+  ->  ( C  ^c  -u 1
)  =  ( 1  /  ( C  ^c  1 ) ) )
14 rpcxp1 13180 . . . . . . . . 9  |-  ( C  e.  RR+  ->  ( C  ^c  1 )  =  C )
1514oveq2d 5834 . . . . . . . 8  |-  ( C  e.  RR+  ->  ( 1  /  ( C  ^c  1 ) )  =  ( 1  /  C ) )
1613, 15eqtrd 2190 . . . . . . 7  |-  ( C  e.  RR+  ->  ( C  ^c  -u 1
)  =  ( 1  /  C ) )
1716adantl 275 . . . . . 6  |-  ( ( A  e.  RR+  /\  C  e.  RR+ )  ->  ( C  ^c  -u 1
)  =  ( 1  /  C ) )
1817oveq2d 5834 . . . . 5  |-  ( ( A  e.  RR+  /\  C  e.  RR+ )  ->  ( A  x.  ( C  ^c  -u 1 ) )  =  ( A  x.  ( 1  /  C ) ) )
1910, 18eqtr4d 2193 . . . 4  |-  ( ( A  e.  RR+  /\  C  e.  RR+ )  ->  ( A  /  C )  =  ( A  x.  ( C  ^c  -u 1
) ) )
2019adantl 275 . . 3  |-  ( ( ( B  e.  RR+  /\  B #  1 )  /\  ( A  e.  RR+  /\  C  e.  RR+ ) )  -> 
( A  /  C
)  =  ( A  x.  ( C  ^c  -u 1 ) ) )
2120oveq2d 5834 . 2  |-  ( ( ( B  e.  RR+  /\  B #  1 )  /\  ( A  e.  RR+  /\  C  e.  RR+ ) )  -> 
( B logb  ( A  /  C ) )  =  ( B logb  ( A  x.  ( C  ^c  -u 1 ) ) ) )
22 simpll 519 . . . . 5  |-  ( ( ( B  e.  RR+  /\  B #  1 )  /\  ( A  e.  RR+  /\  C  e.  RR+ ) )  ->  B  e.  RR+ )
23 simplr 520 . . . . 5  |-  ( ( ( B  e.  RR+  /\  B #  1 )  /\  ( A  e.  RR+  /\  C  e.  RR+ ) )  ->  B #  1 )
24 simprr 522 . . . . 5  |-  ( ( ( B  e.  RR+  /\  B #  1 )  /\  ( A  e.  RR+  /\  C  e.  RR+ ) )  ->  C  e.  RR+ )
25 rplogbcl 13223 . . . . 5  |-  ( ( B  e.  RR+  /\  B #  1  /\  C  e.  RR+ )  ->  ( B logb  C )  e.  RR )
2622, 23, 24, 25syl3anc 1220 . . . 4  |-  ( ( ( B  e.  RR+  /\  B #  1 )  /\  ( A  e.  RR+  /\  C  e.  RR+ ) )  -> 
( B logb  C )  e.  RR )
27 recn 7848 . . . 4  |-  ( ( B logb  C )  e.  RR  ->  ( B logb  C )  e.  CC )
28 mulm1 8258 . . . . 5  |-  ( ( B logb  C )  e.  CC  ->  ( -u 1  x.  ( B logb  C ) )  =  -u ( B logb  C ) )
2928oveq2d 5834 . . . 4  |-  ( ( B logb  C )  e.  CC  ->  ( ( B logb  A )  +  ( -u 1  x.  ( B logb  C ) ) )  =  ( ( B logb  A )  +  -u ( B logb  C ) ) )
3026, 27, 293syl 17 . . 3  |-  ( ( ( B  e.  RR+  /\  B #  1 )  /\  ( A  e.  RR+  /\  C  e.  RR+ ) )  -> 
( ( B logb  A )  +  ( -u 1  x.  ( B logb  C ) ) )  =  ( ( B logb  A )  +  -u ( B logb  C ) ) )
31 simprl 521 . . . . . 6  |-  ( ( ( B  e.  RR+  /\  B #  1 )  /\  ( A  e.  RR+  /\  C  e.  RR+ ) )  ->  A  e.  RR+ )
32 rplogbcl 13223 . . . . . 6  |-  ( ( B  e.  RR+  /\  B #  1  /\  A  e.  RR+ )  ->  ( B logb  A )  e.  RR )
3322, 23, 31, 32syl3anc 1220 . . . . 5  |-  ( ( ( B  e.  RR+  /\  B #  1 )  /\  ( A  e.  RR+  /\  C  e.  RR+ ) )  -> 
( B logb  A )  e.  RR )
3433recnd 7889 . . . 4  |-  ( ( ( B  e.  RR+  /\  B #  1 )  /\  ( A  e.  RR+  /\  C  e.  RR+ ) )  -> 
( B logb  A )  e.  CC )
3526recnd 7889 . . . 4  |-  ( ( ( B  e.  RR+  /\  B #  1 )  /\  ( A  e.  RR+  /\  C  e.  RR+ ) )  -> 
( B logb  C )  e.  CC )
3634, 35negsubd 8175 . . 3  |-  ( ( ( B  e.  RR+  /\  B #  1 )  /\  ( A  e.  RR+  /\  C  e.  RR+ ) )  -> 
( ( B logb  A )  +  -u ( B logb  C ) )  =  ( ( B logb  A )  -  ( B logb 
C ) ) )
3730, 36eqtr2d 2191 . 2  |-  ( ( ( B  e.  RR+  /\  B #  1 )  /\  ( A  e.  RR+  /\  C  e.  RR+ ) )  -> 
( ( B logb  A )  -  ( B logb  C ) )  =  ( ( B logb  A )  +  (
-u 1  x.  ( B logb 
C ) ) ) )
383, 21, 373eqtr4d 2200 1  |-  ( ( ( B  e.  RR+  /\  B #  1 )  /\  ( A  e.  RR+  /\  C  e.  RR+ ) )  -> 
( B logb  ( A  /  C ) )  =  ( ( B logb  A )  -  ( B logb  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   class class class wbr 3965  (class class class)co 5818   CCcc 7713   RRcr 7714   0cc0 7715   1c1 7716    + caddc 7718    x. cmul 7720    - cmin 8029   -ucneg 8030   # cap 8439    / cdiv 8528   RR+crp 9542    ^c ccxp 13138   logb clogb 13220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835  ax-pre-suploc 7836  ax-addf 7837  ax-mulf 7838
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-disj 3943  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-isom 5176  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-of 6026  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-frec 6332  df-1o 6357  df-oadd 6361  df-er 6473  df-map 6588  df-pm 6589  df-en 6679  df-dom 6680  df-fin 6681  df-sup 6920  df-inf 6921  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-q 9511  df-rp 9543  df-xneg 9661  df-xadd 9662  df-ioo 9778  df-ico 9780  df-icc 9781  df-fz 9895  df-fzo 10024  df-seqfrec 10327  df-exp 10401  df-fac 10582  df-bc 10604  df-ihash 10632  df-shft 10697  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881  df-clim 11158  df-sumdc 11233  df-ef 11527  df-e 11528  df-rest 12313  df-topgen 12332  df-psmet 12347  df-xmet 12348  df-met 12349  df-bl 12350  df-mopn 12351  df-top 12356  df-topon 12369  df-bases 12401  df-ntr 12456  df-cn 12548  df-cnp 12549  df-tx 12613  df-cncf 12918  df-limced 12985  df-dvap 12986  df-relog 13139  df-rpcxp 13140  df-logb 13221
This theorem is referenced by:  logbrec  13237
  Copyright terms: Public domain W3C validator