ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrtdiv Unicode version

Theorem sqrtdiv 11428
Description: Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016.)
Assertion
Ref Expression
sqrtdiv  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  ( A  /  B ) )  =  ( ( sqr `  A )  /  ( sqr `  B ) ) )

Proof of Theorem sqrtdiv
StepHypRef Expression
1 rerpdivcl 9826 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( A  /  B
)  e.  RR )
21adantlr 477 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( A  /  B
)  e.  RR )
3 elrp 9797 . . . . . 6  |-  ( B  e.  RR+  <->  ( B  e.  RR  /\  0  < 
B ) )
4 divge0 8966 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  0  <_  ( A  /  B ) )
53, 4sylan2b 287 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  0  <_  ( A  /  B ) )
6 resqrtcl 11415 . . . . 5  |-  ( ( ( A  /  B
)  e.  RR  /\  0  <_  ( A  /  B ) )  -> 
( sqr `  ( A  /  B ) )  e.  RR )
72, 5, 6syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  ( A  /  B ) )  e.  RR )
87recnd 8121 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  ( A  /  B ) )  e.  CC )
9 rpsqrtcl 11427 . . . . 5  |-  ( B  e.  RR+  ->  ( sqr `  B )  e.  RR+ )
109adantl 277 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  B
)  e.  RR+ )
1110rpcnd 9840 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  B
)  e.  CC )
1210rpap0d 9844 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  B
) #  0 )
138, 11, 12divcanap4d 8889 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( ( ( sqr `  ( A  /  B
) )  x.  ( sqr `  B ) )  /  ( sqr `  B
) )  =  ( sqr `  ( A  /  B ) ) )
14 rprege0 9810 . . . . . 6  |-  ( B  e.  RR+  ->  ( B  e.  RR  /\  0  <_  B ) )
1514adantl 277 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( B  e.  RR  /\  0  <_  B )
)
16 sqrtmul 11421 . . . . 5  |-  ( ( ( ( A  /  B )  e.  RR  /\  0  <_  ( A  /  B ) )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( sqr `  ( ( A  /  B )  x.  B
) )  =  ( ( sqr `  ( A  /  B ) )  x.  ( sqr `  B
) ) )
172, 5, 15, 16syl21anc 1249 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  (
( A  /  B
)  x.  B ) )  =  ( ( sqr `  ( A  /  B ) )  x.  ( sqr `  B
) ) )
18 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  A  e.  RR )
1918recnd 8121 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  A  e.  CC )
20 rpcn 9804 . . . . . . 7  |-  ( B  e.  RR+  ->  B  e.  CC )
2120adantl 277 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  B  e.  CC )
22 rpap0 9812 . . . . . . 7  |-  ( B  e.  RR+  ->  B #  0 )
2322adantl 277 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  B #  0 )
2419, 21, 23divcanap1d 8884 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( ( A  /  B )  x.  B
)  =  A )
2524fveq2d 5593 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  (
( A  /  B
)  x.  B ) )  =  ( sqr `  A ) )
2617, 25eqtr3d 2241 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( ( sqr `  ( A  /  B ) )  x.  ( sqr `  B
) )  =  ( sqr `  A ) )
2726oveq1d 5972 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( ( ( sqr `  ( A  /  B
) )  x.  ( sqr `  B ) )  /  ( sqr `  B
) )  =  ( ( sqr `  A
)  /  ( sqr `  B ) ) )
2813, 27eqtr3d 2241 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  ( A  /  B ) )  =  ( ( sqr `  A )  /  ( sqr `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   class class class wbr 4051   ` cfv 5280  (class class class)co 5957   CCcc 7943   RRcr 7944   0cc0 7945    x. cmul 7950    < clt 8127    <_ cle 8128   # cap 8674    / cdiv 8765   RR+crp 9795   sqrcsqrt 11382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-rp 9796  df-seqfrec 10615  df-exp 10706  df-rsqrt 11384
This theorem is referenced by:  sqrtdivd  11554
  Copyright terms: Public domain W3C validator