ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrtdiv Unicode version

Theorem sqrtdiv 11272
Description: Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016.)
Assertion
Ref Expression
sqrtdiv  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  ( A  /  B ) )  =  ( ( sqr `  A )  /  ( sqr `  B ) ) )

Proof of Theorem sqrtdiv
StepHypRef Expression
1 rerpdivcl 9788 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( A  /  B
)  e.  RR )
21adantlr 477 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( A  /  B
)  e.  RR )
3 elrp 9759 . . . . . 6  |-  ( B  e.  RR+  <->  ( B  e.  RR  /\  0  < 
B ) )
4 divge0 8928 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  0  <_  ( A  /  B ) )
53, 4sylan2b 287 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  0  <_  ( A  /  B ) )
6 resqrtcl 11259 . . . . 5  |-  ( ( ( A  /  B
)  e.  RR  /\  0  <_  ( A  /  B ) )  -> 
( sqr `  ( A  /  B ) )  e.  RR )
72, 5, 6syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  ( A  /  B ) )  e.  RR )
87recnd 8083 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  ( A  /  B ) )  e.  CC )
9 rpsqrtcl 11271 . . . . 5  |-  ( B  e.  RR+  ->  ( sqr `  B )  e.  RR+ )
109adantl 277 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  B
)  e.  RR+ )
1110rpcnd 9802 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  B
)  e.  CC )
1210rpap0d 9806 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  B
) #  0 )
138, 11, 12divcanap4d 8851 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( ( ( sqr `  ( A  /  B
) )  x.  ( sqr `  B ) )  /  ( sqr `  B
) )  =  ( sqr `  ( A  /  B ) ) )
14 rprege0 9772 . . . . . 6  |-  ( B  e.  RR+  ->  ( B  e.  RR  /\  0  <_  B ) )
1514adantl 277 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( B  e.  RR  /\  0  <_  B )
)
16 sqrtmul 11265 . . . . 5  |-  ( ( ( ( A  /  B )  e.  RR  /\  0  <_  ( A  /  B ) )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( sqr `  ( ( A  /  B )  x.  B
) )  =  ( ( sqr `  ( A  /  B ) )  x.  ( sqr `  B
) ) )
172, 5, 15, 16syl21anc 1248 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  (
( A  /  B
)  x.  B ) )  =  ( ( sqr `  ( A  /  B ) )  x.  ( sqr `  B
) ) )
18 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  A  e.  RR )
1918recnd 8083 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  A  e.  CC )
20 rpcn 9766 . . . . . . 7  |-  ( B  e.  RR+  ->  B  e.  CC )
2120adantl 277 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  B  e.  CC )
22 rpap0 9774 . . . . . . 7  |-  ( B  e.  RR+  ->  B #  0 )
2322adantl 277 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  B #  0 )
2419, 21, 23divcanap1d 8846 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( ( A  /  B )  x.  B
)  =  A )
2524fveq2d 5574 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  (
( A  /  B
)  x.  B ) )  =  ( sqr `  A ) )
2617, 25eqtr3d 2239 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( ( sqr `  ( A  /  B ) )  x.  ( sqr `  B
) )  =  ( sqr `  A ) )
2726oveq1d 5949 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( ( ( sqr `  ( A  /  B
) )  x.  ( sqr `  B ) )  /  ( sqr `  B
) )  =  ( ( sqr `  A
)  /  ( sqr `  B ) ) )
2813, 27eqtr3d 2239 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  ( A  /  B ) )  =  ( ( sqr `  A )  /  ( sqr `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   class class class wbr 4043   ` cfv 5268  (class class class)co 5934   CCcc 7905   RRcr 7906   0cc0 7907    x. cmul 7912    < clt 8089    <_ cle 8090   # cap 8636    / cdiv 8727   RR+crp 9757   sqrcsqrt 11226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-rp 9758  df-seqfrec 10574  df-exp 10665  df-rsqrt 11228
This theorem is referenced by:  sqrtdivd  11398
  Copyright terms: Public domain W3C validator