ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrtdiv Unicode version

Theorem sqrtdiv 10807
Description: Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016.)
Assertion
Ref Expression
sqrtdiv  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  ( A  /  B ) )  =  ( ( sqr `  A )  /  ( sqr `  B ) ) )

Proof of Theorem sqrtdiv
StepHypRef Expression
1 rerpdivcl 9465 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( A  /  B
)  e.  RR )
21adantlr 468 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( A  /  B
)  e.  RR )
3 elrp 9436 . . . . . 6  |-  ( B  e.  RR+  <->  ( B  e.  RR  /\  0  < 
B ) )
4 divge0 8624 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  0  <_  ( A  /  B ) )
53, 4sylan2b 285 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  0  <_  ( A  /  B ) )
6 resqrtcl 10794 . . . . 5  |-  ( ( ( A  /  B
)  e.  RR  /\  0  <_  ( A  /  B ) )  -> 
( sqr `  ( A  /  B ) )  e.  RR )
72, 5, 6syl2anc 408 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  ( A  /  B ) )  e.  RR )
87recnd 7787 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  ( A  /  B ) )  e.  CC )
9 rpsqrtcl 10806 . . . . 5  |-  ( B  e.  RR+  ->  ( sqr `  B )  e.  RR+ )
109adantl 275 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  B
)  e.  RR+ )
1110rpcnd 9478 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  B
)  e.  CC )
1210rpap0d 9482 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  B
) #  0 )
138, 11, 12divcanap4d 8549 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( ( ( sqr `  ( A  /  B
) )  x.  ( sqr `  B ) )  /  ( sqr `  B
) )  =  ( sqr `  ( A  /  B ) ) )
14 rprege0 9449 . . . . . 6  |-  ( B  e.  RR+  ->  ( B  e.  RR  /\  0  <_  B ) )
1514adantl 275 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( B  e.  RR  /\  0  <_  B )
)
16 sqrtmul 10800 . . . . 5  |-  ( ( ( ( A  /  B )  e.  RR  /\  0  <_  ( A  /  B ) )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( sqr `  ( ( A  /  B )  x.  B
) )  =  ( ( sqr `  ( A  /  B ) )  x.  ( sqr `  B
) ) )
172, 5, 15, 16syl21anc 1215 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  (
( A  /  B
)  x.  B ) )  =  ( ( sqr `  ( A  /  B ) )  x.  ( sqr `  B
) ) )
18 simpll 518 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  A  e.  RR )
1918recnd 7787 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  A  e.  CC )
20 rpcn 9443 . . . . . . 7  |-  ( B  e.  RR+  ->  B  e.  CC )
2120adantl 275 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  B  e.  CC )
22 rpap0 9451 . . . . . . 7  |-  ( B  e.  RR+  ->  B #  0 )
2322adantl 275 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  B #  0 )
2419, 21, 23divcanap1d 8544 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( ( A  /  B )  x.  B
)  =  A )
2524fveq2d 5418 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  (
( A  /  B
)  x.  B ) )  =  ( sqr `  A ) )
2617, 25eqtr3d 2172 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( ( sqr `  ( A  /  B ) )  x.  ( sqr `  B
) )  =  ( sqr `  A ) )
2726oveq1d 5782 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( ( ( sqr `  ( A  /  B
) )  x.  ( sqr `  B ) )  /  ( sqr `  B
) )  =  ( ( sqr `  A
)  /  ( sqr `  B ) ) )
2813, 27eqtr3d 2172 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  ( A  /  B ) )  =  ( ( sqr `  A )  /  ( sqr `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   class class class wbr 3924   ` cfv 5118  (class class class)co 5767   CCcc 7611   RRcr 7612   0cc0 7613    x. cmul 7618    < clt 7793    <_ cle 7794   # cap 8336    / cdiv 8425   RR+crp 9434   sqrcsqrt 10761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-seqfrec 10212  df-exp 10286  df-rsqrt 10763
This theorem is referenced by:  sqrtdivd  10933
  Copyright terms: Public domain W3C validator