ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpxr Unicode version

Theorem rpxr 9818
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
rpxr  |-  ( A  e.  RR+  ->  A  e. 
RR* )

Proof of Theorem rpxr
StepHypRef Expression
1 rpre 9817 . 2  |-  ( A  e.  RR+  ->  A  e.  RR )
21rexrd 8157 1  |-  ( A  e.  RR+  ->  A  e. 
RR* )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   RR*cxr 8141   RR+crp 9810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rab 2495  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-xr 8146  df-rp 9811
This theorem is referenced by:  xrminrpcl  11700  blcntrps  15002  blcntr  15003  unirnblps  15009  unirnbl  15010  blssexps  15016  blssex  15017  blin2  15019  neibl  15078  blnei  15079  metss  15081  metss2lem  15084  bdmet  15089  bdmopn  15091  mopnex  15092  metrest  15093  xmettx  15097  metcnp3  15098  metcnp  15099  metcnpi3  15104  txmetcnp  15105  limcimolemlt  15251
  Copyright terms: Public domain W3C validator