| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpxr | Unicode version | ||
| Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| rpxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 9781 |
. 2
| |
| 2 | 1 | rexrd 8121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rab 2492 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-xr 8110 df-rp 9775 |
| This theorem is referenced by: xrminrpcl 11527 blcntrps 14829 blcntr 14830 unirnblps 14836 unirnbl 14837 blssexps 14843 blssex 14844 blin2 14846 neibl 14905 blnei 14906 metss 14908 metss2lem 14911 bdmet 14916 bdmopn 14918 mopnex 14919 metrest 14920 xmettx 14924 metcnp3 14925 metcnp 14926 metcnpi3 14931 txmetcnp 14932 limcimolemlt 15078 |
| Copyright terms: Public domain | W3C validator |