Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpxr | Unicode version |
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
rpxr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 9560 | . 2 | |
2 | 1 | rexrd 7921 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 cxr 7905 crp 9553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rab 2444 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-xr 7910 df-rp 9554 |
This theorem is referenced by: xrminrpcl 11164 blcntrps 12786 blcntr 12787 unirnblps 12793 unirnbl 12794 blssexps 12800 blssex 12801 blin2 12803 neibl 12862 blnei 12863 metss 12865 metss2lem 12868 bdmet 12873 bdmopn 12875 mopnex 12876 metrest 12877 xmettx 12881 metcnp3 12882 metcnp 12883 metcnpi3 12888 txmetcnp 12889 limcimolemlt 13004 |
Copyright terms: Public domain | W3C validator |