![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpxr | Unicode version |
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
rpxr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 9726 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | rexrd 8069 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-xr 8058 df-rp 9720 |
This theorem is referenced by: xrminrpcl 11417 blcntrps 14583 blcntr 14584 unirnblps 14590 unirnbl 14591 blssexps 14597 blssex 14598 blin2 14600 neibl 14659 blnei 14660 metss 14662 metss2lem 14665 bdmet 14670 bdmopn 14672 mopnex 14673 metrest 14674 xmettx 14678 metcnp3 14679 metcnp 14680 metcnpi3 14685 txmetcnp 14686 limcimolemlt 14818 |
Copyright terms: Public domain | W3C validator |