| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpxr | Unicode version | ||
| Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| rpxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 9782 |
. 2
| |
| 2 | 1 | rexrd 8122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-xr 8111 df-rp 9776 |
| This theorem is referenced by: xrminrpcl 11585 blcntrps 14887 blcntr 14888 unirnblps 14894 unirnbl 14895 blssexps 14901 blssex 14902 blin2 14904 neibl 14963 blnei 14964 metss 14966 metss2lem 14969 bdmet 14974 bdmopn 14976 mopnex 14977 metrest 14978 xmettx 14982 metcnp3 14983 metcnp 14984 metcnpi3 14989 txmetcnp 14990 limcimolemlt 15136 |
| Copyright terms: Public domain | W3C validator |