| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpxr | Unicode version | ||
| Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| rpxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 9817 |
. 2
| |
| 2 | 1 | rexrd 8157 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-xr 8146 df-rp 9811 |
| This theorem is referenced by: xrminrpcl 11700 blcntrps 15002 blcntr 15003 unirnblps 15009 unirnbl 15010 blssexps 15016 blssex 15017 blin2 15019 neibl 15078 blnei 15079 metss 15081 metss2lem 15084 bdmet 15089 bdmopn 15091 mopnex 15092 metrest 15093 xmettx 15097 metcnp3 15098 metcnp 15099 metcnpi3 15104 txmetcnp 15105 limcimolemlt 15251 |
| Copyright terms: Public domain | W3C validator |