![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpxr | Unicode version |
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
rpxr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 9349 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | rexrd 7739 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-rab 2399 df-v 2659 df-un 3041 df-in 3043 df-ss 3050 df-xr 7728 df-rp 9344 |
This theorem is referenced by: xrminrpcl 10935 blcntrps 12404 blcntr 12405 unirnblps 12411 unirnbl 12412 blssexps 12418 blssex 12419 blin2 12421 neibl 12480 blnei 12481 metss 12483 metss2lem 12486 bdmet 12491 bdmopn 12493 mopnex 12494 metrest 12495 xmettx 12499 metcnp3 12500 metcnp 12501 metcnpi3 12506 txmetcnp 12507 limcimolemlt 12589 |
Copyright terms: Public domain | W3C validator |