| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpxr | Unicode version | ||
| Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| rpxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 9852 |
. 2
| |
| 2 | 1 | rexrd 8192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-xr 8181 df-rp 9846 |
| This theorem is referenced by: xrminrpcl 11780 blcntrps 15083 blcntr 15084 unirnblps 15090 unirnbl 15091 blssexps 15097 blssex 15098 blin2 15100 neibl 15159 blnei 15160 metss 15162 metss2lem 15165 bdmet 15170 bdmopn 15172 mopnex 15173 metrest 15174 xmettx 15178 metcnp3 15179 metcnp 15180 metcnpi3 15185 txmetcnp 15186 limcimolemlt 15332 |
| Copyright terms: Public domain | W3C validator |