| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpcn | GIF version | ||
| Description: A positive real is a complex number. (Contributed by NM, 11-Nov-2008.) |
| Ref | Expression |
|---|---|
| rpcn | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 9864 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | 1 | recnd 8183 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ℂcc 8005 ℝ+crp 9857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8099 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-in 3203 df-ss 3210 df-rp 9858 |
| This theorem is referenced by: rpcnne0 9877 rpcnap0 9878 divge1 9927 sqrtdiv 11561 efgt1p2 12214 efgt1p 12215 pilem1 15461 rpcxp0 15580 rpcxp1 15581 cxprec 15592 rplogbval 15627 rprelogbdiv 15639 |
| Copyright terms: Public domain | W3C validator |