ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpcn GIF version

Theorem rpcn 9662
Description: A positive real is a complex number. (Contributed by NM, 11-Nov-2008.)
Assertion
Ref Expression
rpcn (𝐴 ∈ ℝ+𝐴 ∈ ℂ)

Proof of Theorem rpcn
StepHypRef Expression
1 rpre 9660 . 2 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
21recnd 7986 1 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148  cc 7809  +crp 9653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-resscn 7903
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rab 2464  df-in 3136  df-ss 3143  df-rp 9654
This theorem is referenced by:  rpcnne0  9673  rpcnap0  9674  divge1  9723  sqrtdiv  11051  efgt1p2  11703  efgt1p  11704  pilem1  14203  rpcxp0  14322  rpcxp1  14323  cxprec  14334  rplogbval  14366  rprelogbdiv  14378
  Copyright terms: Public domain W3C validator