Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpcn | GIF version |
Description: A positive real is a complex number. (Contributed by NM, 11-Nov-2008.) |
Ref | Expression |
---|---|
rpcn | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 9549 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | 1 | recnd 7889 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2128 ℂcc 7713 ℝ+crp 9542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-resscn 7807 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rab 2444 df-in 3108 df-ss 3115 df-rp 9543 |
This theorem is referenced by: rpcnne0 9562 rpcnap0 9563 divge1 9612 sqrtdiv 10924 efgt1p2 11574 efgt1p 11575 pilem1 13060 rpcxp0 13179 rpcxp1 13180 cxprec 13191 rplogbval 13222 rprelogbdiv 13234 |
Copyright terms: Public domain | W3C validator |