Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpcn | GIF version |
Description: A positive real is a complex number. (Contributed by NM, 11-Nov-2008.) |
Ref | Expression |
---|---|
rpcn | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 9617 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | 1 | recnd 7948 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ℂcc 7772 ℝ+crp 9610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-in 3127 df-ss 3134 df-rp 9611 |
This theorem is referenced by: rpcnne0 9630 rpcnap0 9631 divge1 9680 sqrtdiv 11006 efgt1p2 11658 efgt1p 11659 pilem1 13494 rpcxp0 13613 rpcxp1 13614 cxprec 13625 rplogbval 13657 rprelogbdiv 13669 |
Copyright terms: Public domain | W3C validator |