ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpcn GIF version

Theorem rpcn 9731
Description: A positive real is a complex number. (Contributed by NM, 11-Nov-2008.)
Assertion
Ref Expression
rpcn (𝐴 ∈ ℝ+𝐴 ∈ ℂ)

Proof of Theorem rpcn
StepHypRef Expression
1 rpre 9729 . 2 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
21recnd 8050 1 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  cc 7872  +crp 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7966
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-in 3160  df-ss 3167  df-rp 9723
This theorem is referenced by:  rpcnne0  9742  rpcnap0  9743  divge1  9792  sqrtdiv  11189  efgt1p2  11841  efgt1p  11842  pilem1  14955  rpcxp0  15074  rpcxp1  15075  cxprec  15086  rplogbval  15118  rprelogbdiv  15130
  Copyright terms: Public domain W3C validator