ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpcn GIF version

Theorem rpcn 9619
Description: A positive real is a complex number. (Contributed by NM, 11-Nov-2008.)
Assertion
Ref Expression
rpcn (𝐴 ∈ ℝ+𝐴 ∈ ℂ)

Proof of Theorem rpcn
StepHypRef Expression
1 rpre 9617 . 2 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
21recnd 7948 1 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  cc 7772  +crp 9610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-in 3127  df-ss 3134  df-rp 9611
This theorem is referenced by:  rpcnne0  9630  rpcnap0  9631  divge1  9680  sqrtdiv  11006  efgt1p2  11658  efgt1p  11659  pilem1  13494  rpcxp0  13613  rpcxp1  13614  cxprec  13625  rplogbval  13657  rprelogbdiv  13669
  Copyright terms: Public domain W3C validator