| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rpcn | GIF version | ||
| Description: A positive real is a complex number. (Contributed by NM, 11-Nov-2008.) | 
| Ref | Expression | 
|---|---|
| rpcn | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rpre 9735 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | 1 | recnd 8055 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 ℂcc 7877 ℝ+crp 9728 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-in 3163 df-ss 3170 df-rp 9729 | 
| This theorem is referenced by: rpcnne0 9748 rpcnap0 9749 divge1 9798 sqrtdiv 11207 efgt1p2 11860 efgt1p 11861 pilem1 15015 rpcxp0 15134 rpcxp1 15135 cxprec 15146 rplogbval 15181 rprelogbdiv 15193 | 
| Copyright terms: Public domain | W3C validator |