| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpcn | GIF version | ||
| Description: A positive real is a complex number. (Contributed by NM, 11-Nov-2008.) |
| Ref | Expression |
|---|---|
| rpcn | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 9824 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | 1 | recnd 8143 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 ℂcc 7965 ℝ+crp 9817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-resscn 8059 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rab 2497 df-in 3183 df-ss 3190 df-rp 9818 |
| This theorem is referenced by: rpcnne0 9837 rpcnap0 9838 divge1 9887 sqrtdiv 11519 efgt1p2 12172 efgt1p 12173 pilem1 15418 rpcxp0 15537 rpcxp1 15538 cxprec 15549 rplogbval 15584 rprelogbdiv 15596 |
| Copyright terms: Public domain | W3C validator |