ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpcn GIF version

Theorem rpcn 9551
Description: A positive real is a complex number. (Contributed by NM, 11-Nov-2008.)
Assertion
Ref Expression
rpcn (𝐴 ∈ ℝ+𝐴 ∈ ℂ)

Proof of Theorem rpcn
StepHypRef Expression
1 rpre 9549 . 2 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
21recnd 7889 1 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2128  cc 7713  +crp 9542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139  ax-resscn 7807
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rab 2444  df-in 3108  df-ss 3115  df-rp 9543
This theorem is referenced by:  rpcnne0  9562  rpcnap0  9563  divge1  9612  sqrtdiv  10924  efgt1p2  11574  efgt1p  11575  pilem1  13060  rpcxp0  13179  rpcxp1  13180  cxprec  13191  rplogbval  13222  rprelogbdiv  13234
  Copyright terms: Public domain W3C validator