![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpcn | GIF version |
Description: A positive real is a complex number. (Contributed by NM, 11-Nov-2008.) |
Ref | Expression |
---|---|
rpcn | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 9726 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | 1 | recnd 8048 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ℂcc 7870 ℝ+crp 9719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-in 3159 df-ss 3166 df-rp 9720 |
This theorem is referenced by: rpcnne0 9739 rpcnap0 9740 divge1 9789 sqrtdiv 11186 efgt1p2 11838 efgt1p 11839 pilem1 14914 rpcxp0 15033 rpcxp1 15034 cxprec 15045 rplogbval 15077 rprelogbdiv 15089 |
Copyright terms: Public domain | W3C validator |