ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgrp0 Unicode version

Theorem sgrp0 13112
Description: Any set with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021.)
Assertion
Ref Expression
sgrp0  |-  ( ( M  e.  V  /\  ( Base `  M )  =  (/) )  ->  M  e. Smgrp )

Proof of Theorem sgrp0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgm0 13071 . 2  |-  ( ( M  e.  V  /\  ( Base `  M )  =  (/) )  ->  M  e. Mgm )
2 rzal 3549 . . 3  |-  ( (
Base `  M )  =  (/)  ->  A. x  e.  ( Base `  M
) A. y  e.  ( Base `  M
) A. z  e.  ( Base `  M
) ( ( x ( +g  `  M
) y ) ( +g  `  M ) z )  =  ( x ( +g  `  M
) ( y ( +g  `  M ) z ) ) )
32adantl 277 . 2  |-  ( ( M  e.  V  /\  ( Base `  M )  =  (/) )  ->  A. x  e.  ( Base `  M
) A. y  e.  ( Base `  M
) A. z  e.  ( Base `  M
) ( ( x ( +g  `  M
) y ) ( +g  `  M ) z )  =  ( x ( +g  `  M
) ( y ( +g  `  M ) z ) ) )
4 eqid 2196 . . 3  |-  ( Base `  M )  =  (
Base `  M )
5 eqid 2196 . . 3  |-  ( +g  `  M )  =  ( +g  `  M )
64, 5issgrp 13105 . 2  |-  ( M  e. Smgrp 
<->  ( M  e. Mgm  /\  A. x  e.  ( Base `  M ) A. y  e.  ( Base `  M
) A. z  e.  ( Base `  M
) ( ( x ( +g  `  M
) y ) ( +g  `  M ) z )  =  ( x ( +g  `  M
) ( y ( +g  `  M ) z ) ) ) )
71, 3, 6sylanbrc 417 1  |-  ( ( M  e.  V  /\  ( Base `  M )  =  (/) )  ->  M  e. Smgrp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   (/)c0 3451   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780  Mgmcmgm 13056  Smgrpcsgrp 13103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mgm 13058  df-sgrp 13104
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator