ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgrp0 Unicode version

Theorem sgrp0 12650
Description: Any set with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021.)
Assertion
Ref Expression
sgrp0  |-  ( ( M  e.  V  /\  ( Base `  M )  =  (/) )  ->  M  e. Smgrp )

Proof of Theorem sgrp0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgm0 12623 . 2  |-  ( ( M  e.  V  /\  ( Base `  M )  =  (/) )  ->  M  e. Mgm )
2 rzal 3512 . . 3  |-  ( (
Base `  M )  =  (/)  ->  A. x  e.  ( Base `  M
) A. y  e.  ( Base `  M
) A. z  e.  ( Base `  M
) ( ( x ( +g  `  M
) y ) ( +g  `  M ) z )  =  ( x ( +g  `  M
) ( y ( +g  `  M ) z ) ) )
32adantl 275 . 2  |-  ( ( M  e.  V  /\  ( Base `  M )  =  (/) )  ->  A. x  e.  ( Base `  M
) A. y  e.  ( Base `  M
) A. z  e.  ( Base `  M
) ( ( x ( +g  `  M
) y ) ( +g  `  M ) z )  =  ( x ( +g  `  M
) ( y ( +g  `  M ) z ) ) )
4 eqid 2170 . . 3  |-  ( Base `  M )  =  (
Base `  M )
5 eqid 2170 . . 3  |-  ( +g  `  M )  =  ( +g  `  M )
64, 5issgrp 12644 . 2  |-  ( M  e. Smgrp 
<->  ( M  e. Mgm  /\  A. x  e.  ( Base `  M ) A. y  e.  ( Base `  M
) A. z  e.  ( Base `  M
) ( ( x ( +g  `  M
) y ) ( +g  `  M ) z )  =  ( x ( +g  `  M
) ( y ( +g  `  M ) z ) ) ) )
71, 3, 6sylanbrc 415 1  |-  ( ( M  e.  V  /\  ( Base `  M )  =  (/) )  ->  M  e. Smgrp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   (/)c0 3414   ` cfv 5198  (class class class)co 5853   Basecbs 12416   +g cplusg 12480  Mgmcmgm 12608  Smgrpcsgrp 12642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-ov 5856  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-mgm 12610  df-sgrp 12643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator