ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgrp0 Unicode version

Theorem sgrp0 13438
Description: Any set with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021.)
Assertion
Ref Expression
sgrp0  |-  ( ( M  e.  V  /\  ( Base `  M )  =  (/) )  ->  M  e. Smgrp )

Proof of Theorem sgrp0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgm0 13397 . 2  |-  ( ( M  e.  V  /\  ( Base `  M )  =  (/) )  ->  M  e. Mgm )
2 rzal 3589 . . 3  |-  ( (
Base `  M )  =  (/)  ->  A. x  e.  ( Base `  M
) A. y  e.  ( Base `  M
) A. z  e.  ( Base `  M
) ( ( x ( +g  `  M
) y ) ( +g  `  M ) z )  =  ( x ( +g  `  M
) ( y ( +g  `  M ) z ) ) )
32adantl 277 . 2  |-  ( ( M  e.  V  /\  ( Base `  M )  =  (/) )  ->  A. x  e.  ( Base `  M
) A. y  e.  ( Base `  M
) A. z  e.  ( Base `  M
) ( ( x ( +g  `  M
) y ) ( +g  `  M ) z )  =  ( x ( +g  `  M
) ( y ( +g  `  M ) z ) ) )
4 eqid 2229 . . 3  |-  ( Base `  M )  =  (
Base `  M )
5 eqid 2229 . . 3  |-  ( +g  `  M )  =  ( +g  `  M )
64, 5issgrp 13431 . 2  |-  ( M  e. Smgrp 
<->  ( M  e. Mgm  /\  A. x  e.  ( Base `  M ) A. y  e.  ( Base `  M
) A. z  e.  ( Base `  M
) ( ( x ( +g  `  M
) y ) ( +g  `  M ) z )  =  ( x ( +g  `  M
) ( y ( +g  `  M ) z ) ) ) )
71, 3, 6sylanbrc 417 1  |-  ( ( M  e.  V  /\  ( Base `  M )  =  (/) )  ->  M  e. Smgrp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   (/)c0 3491   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105  Mgmcmgm 13382  Smgrpcsgrp 13429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-mgm 13384  df-sgrp 13430
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator